Deficiency in the monoamine degradation enzyme monoamine oxidase A (MAOA) or prenatal exposure to the monoamine uptake inhibitor cocaine alters behavior in humans and rodents, but the mechanisms are unclear. In MAOA knock-out mice, inhibiting serotonin synthesis during development can prevent abnormal segregation of axons in the retinogeniculate and somatosensory thalamocortical systems. To investigate this effect, we crossed MAOA knock-outs with mice lacking the serotonin transporter 5-HTT or the 5-HT1B receptor, two molecules present in developing sensory projections. Segregation was abnormal in 5-HTT knock-outs and MAOA/5-HTT double knock-outs but was normalized in MAOA/5-HT1B double knock-outs and MAOA/5-HTT/5-HT1B triple knock-outs. This demonstrates that the 5-HT1B receptor is a key factor in abnormal segregation of sensory projections and suggests that serotonergic drugs represent a risk for the development of these projections. We also found that the 5-HT1B receptor has an adverse developmental impact on beam-walking behavior in MAOA knock-outs. Finally, because the 5-HT1B receptor inhibits glutamate release, our results suggest that visual and somatosensory projections must release glutamate for proper segregation.
Retinal ganglion cell (RGCs) project to the ipsilateral and contralateral sides of the brain in the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). Projections from both eyes are initially intermingled until postnatal day 3 (P3) but segregate into eye-specific layers by P8. We report that this segregation does not occur in monoamine oxidase A knock-out mice (MAOA-KO) that have elevated brain levels of serotonin (5-HT) and noradrenaline. The abnormal development of retinal projections can be reversed by inhibiting 5-HT synthesis from P0 to P15. We found that in MAOA-KO mice, 5-HT accumulates in a subpopulation of RGCs and axons during embryonic and early postnatal development. The RGCs do not synthesize 5-HT but reuptake the amine from the extracellular space. In both MAOA-KO and normal mice, high-affinity uptake of 5-HT and serotonin transporter (SERT) immunoreactivity are observed in retinal axons from the optic cup to retinal terminal fields in the SC and dLGN. In the dLGN, transient SERT labeling corresponds predominantly to the ipsilateral retinal projection fields. We show that, in addition to SERT, developing RGCs also transiently express the vesicular monoamine transporter gene VMAT2: thus, retinal axons could store 5-HT in synaptic vesicles and possibly use it as a borrowed neurotransmitter. Finally we show that the 5-HT-1B receptor gene is expressed by RGCs throughout the retina from E15 until adult life. Activation of this receptor is known, from previous studies, to reduce retinotectal activity; thus 5-HT in excess could inhibit activity-dependent segregation mechanisms. A hypothesis is proposed whereby, during normal development, localized SERT expression could confer specific neurotransmission properties on a subset of RGCs and could be important in the fine-tuning of retinal projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.