As antimicrobial resistance is a worldwide problem, threatening both livestock and public health, understanding the drivers for resistance in different settings and countries is essential. Therefore, 30 pig and 30 poultry farms with country-specific high antimicrobial use (AMU) were recruited in the Belgian–Dutch border region. Information regarding production parameters, farm characteristics, biosecurity, and AMU was collected. On average, more biosecurity measures were implemented on Dutch farms, compared to Belgian farms in both animal species. In addition, more opportunities were found to increase the level of internal biosecurity compared to external biosecurity in both countries. AMU, quantified as treatment incidence (TI), differed marginally significant between broiler farms in Belgium and the Netherlands (median BE: 8; NL: 3), whereas in weaned piglets (median BE: 45 and NL: 14) and finishing pigs (median BE: 5 and NL: 1), there was a substantial difference in AMU between farms from both countries. Overall, Dutch farms showed less between-farm variation in TI than did Belgian farms. In both poultry and pig production, the majority of antimicrobials used were extended-spectrum penicillins (BE: 32 and 40%; NL: 40 and 24% for poultry and pigs, respectively). Compared to Belgian farms, Dutch poultry farms used high amounts of (fluoro)quinolones (1 and 15% of total AMU, respectively). None of the production parameters between broiler farms differed significantly, but in pig production, weaning age in Belgian farms (median: 23) was lower than in Dutch farms (median: 27). These results indicate considerable room for improvement in both countries and animal species. Farm-specific preventive strategies can contribute to lowering the risk for animal disease and hence the need for AMU.
The Poultry Red Mite (PRM), Dermanyssus gallinae , is a major threat to the poultry industry worldwide, causing serious problems to animal health and welfare, and huge economic losses. Controlling PRM infestations is very challenging. Conventionally, D. gallinae is treated with synthetic acaricides, but the particular lifestyle of the mite (most of the time spent off the host) makes the efficacy of acaracide sprays often unsatisfactory, as sprays reach only a small part of the population. Moreover, many acaricides have been unlicensed due to human consumer and safety regulations and mites have become resistant to them. A promising course of action is Integrated Pest Management (IPM), which is sustainable for animals, humans and the environment. It combines eight different steps, in which prevention of introduction and monitoring of the pest are key. Further, it focusses on non-chemical treatments, with chemicals only being used as a last resort. Whereas IPM is already widely applied in horticulture, its application is still in its infancy to control D. gallinae in layer houses. This review presents the currently-available possibilities for control of D. gallinae in layer houses for each of the eight IPM steps, including monitoring techniques, established and emerging non-chemical treatments, and the strategic use of chemicals. As such, it provides a needed baseline for future development of specific IPM strategies, which will allow efficient and sustainable control of D. gallinae in poultry farms.
A research centre with 30,568 laying hens, kept in enriched cages and in aviaries, had become naturally infested with poultry red mites (PRM) in 32 of its 48 bird units. Therefore, at the age of 52 weeks all hens were treated with fluralaner through the drinking water. After this treatment, PRM were no longer observed. As all birds were of the same age, and since production figures were measured daily in all 48 units, this offered a unique opportunity to examine how PRM had affected performance. Statistical analyses were done to compare the evolution of production data from the pre-treatment to the post-treatment period in units that were visually free of PRM or infested with PRM to different levels. Production standards provided by the breeding organizations were used as a reference. The results demonstrated significant posttreatment increases of laying percentage, egg weight, egg mass, percentage first choice eggs, feed intake and body weight in heavily infested hens of one or both housing systems, as compared to the non-infested controls. These data confirm that PRM infestations can impact the main performance traits related to profitability of laying hen farms as well as the hens' general condition. ARTICLE HISTORY
Stimulating the regulation of pests by their natural enemies is a way to improve the sustainability of agriculture and respect for the environment. However, the presence of natural enemies does not guarantee the existence of a pest control service. To what extent are predatory mites commonly found in henhouses actually able to regulate a major egg industry pest mite, Dermanyssus gallinae?To answer this question, we have experimentally recreated portions of a poultry house ecosystem allowing the development of the pest over several generations in the presence of a chick and detritivorous mites (Astigmata) that are ubiquitous and abundant in layer farms. In these conditions, we compared the growth of D. gallinae populations in the presence and absence of native predatory arthropods. No effect of native predators on the growth of the D. gallinae population could be detected despite high initial predator-to-prey ratios and satisfactory growth of predator populations. Prey switching to the alternative prey Astigmata likely dilutes the effect of predation on the target prey. Further exploration is needed to see whether action could be taken to enhance the effect of top-down regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.