The CXCR-4 chemokine receptor and CD4 behave as coreceptors for cell line-adapted human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for dual-tropic HIV strains, which also use the CCR-5 coreceptor. The cell line-adapted HIV-1 strains LAI and NDK and the dual-tropic HIV-2 strain ROD were able to infect CD4 ؉ cells expressing human CXCR-4, while only LAI was able to infect cells expressing the rat homolog of CXCR-4. This strain selectivity was addressed by using human-rat CXCR-4 chimeras. All chimeras tested mediated LAI infection, but only those containing the third extracellular domain (e3) of human CXCR-4 mediated NDK and ROD infection. The e3 domain might be required for the functional interaction of NDK and ROD, but not LAI, with CXCR-4. Alternatively, LAI might also interact with e3 but in a different way. Monoclonal antibody 12G5, raised against human CXCR-4, did not stain cells expressing rat CXCR-4. Chimeric human-rat CXCR-4 allowed us to map the 12G5 epitope in the e3 domain. The ability of 12G5 to neutralize infection by certain HIV-1 and HIV-2 strains is also consistent with the role of e3 in the coreceptor activity of CXCR-4. The deletion of most of the amino-terminal extracellular domain (e1) abolished the coreceptor activity of human CXCR-4 for ROD and NDK but not for LAI. These results indicate that HIV strains have different requirements for their interaction with CXCR-4. They also suggest differences in the interaction of dual-tropic HIV with CCR-5 and CXCR-4.
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4.
Human erythroid progenitor cells are the main target cells of the human parvovirus B19 (B19), and B19 infection induces a transient erythroid aplastic crisis. Several authors have reported that the nonstructural protein 1 (NS-1) encoded by this virus has a cytotoxic effect, but the underlying mechanism of NS-1-induced primary erythroid cell death is still not clear. In human erythroid progenitor cells, we investigated the molecular mechanisms leading to apoptosis after natural infection of these cells by the B19 virus. The cytotoxicity of NS-1 was concomitantly evaluated in transfected erythroid cells. B19 infection and NS-1 expression induced DNA fragmentation characteristic of apoptosis, and the commitment of erythroid cells to undergo apoptosis was combined with their accumulation in the G2phase of the cell cycle. Since B19- and NS-1-induced apoptosis was inhibited by caspase 3, 6, and 8 inhibitors, and substantial caspase 3, 6, and 8 activities were induced by NS-1 expression, there may have been interactions between NS-1 and the apoptotic pathways of the death receptors tumor necrosis factor receptor 1 and Fas. Our results suggest that Fas-FasL interaction was not involved in NS-1- or B19-induced apoptosis in erythroid cells. In contrast, these cells were sensitized to tumor necrosis factor alpha (TNF-α)-induced apoptosis. Moreover, the ceramide level was enhanced by B19 infection and NS-1 expression. Therefore, our results suggest that there may be a connection between the respective apoptotic pathways activated by TNF-α and NS-1 in human erythroid cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.