In the cardiovascular system, activation of ionotropic (P2X receptors) and metabotropic (P2Y receptors) P2 nucleotide receptors exerts potent and various responses including vasodilation, vasoconstriction, and vascular smooth muscle cell proliferation. Here we examined the involvement of the small GTPase RhoA in P2Y receptor-mediated effects in vascular myocytes. Stimulation of cultured aortic myocytes with P2Y receptor agonists induced an increase in the amount of membrane-bound RhoA and stimulated actin cytoskeleton organization. P2Y receptor agonist-induced actin stress fiber formation was inhibited by C3 exoenzyme and the Rho kinase inhibitor Y-27632. Stimulation of actin cytoskeleton organization by extracellular nucleotides was also abolished in aortic myocytes expressing a dominant negative form of RhoA. Extracellular nucleotides induced contraction and Y-27632-sensitive Ca(2+) sensitization in aortic rings. Transfection of Swiss 3T3 cells with P2Y receptors showed that Rho kinase-dependent actin stress fiber organization was induced in cells expressing P2Y(1), P2Y(2), P2Y(4), or P2Y(6) receptor subtypes. Our data demonstrate that P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptor subtypes are coupled to activation of RhoA and subsequently to Rho-dependent signaling pathways.
Our data show a beneficial effect of MOI on the cardiac structure and function in SHR associated with an upregulation of PPAR-α and δ signaling. This study thus provides scientific rational support for the empirical use of MOI in the traditional Malagasy medicine against cardiac diseases associated with blood pressure overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.