Direct fired oxy-fuel combustion provides a promising method for heat addition into a supercritical carbon dioxide (sCO2) power cycle. Using this method of thermal energy input into the cycle allows for potentially higher fuel to bus bar cycle efficiency. In addition, the nature of the sCO2 power cycle lends itself to easy and efficient capture of 99% of the CO2 generated in the combustion process. sCO2 power cycles typically operate at pressures above 200 bar, and due to the high degree of recuperation found in these cycles, have a very high combustor inlet temperature. Past works have explored combustor inlet temperatures high enough to be in the autoignition regime. The inlet temperatures which will be explored in this work will be limited to 700°C, which will allows for very different combustor geometry than that which has been studied in the past. While this combustor inlet temperature is lower than that previously studied, when combined with the extremely high pressure, this poses several unique and difficult design challenges.
In order to explore these unique design conditions a reliable and robust CFD solution method was developed. This reliable CFD solution methodology enables rapid iteration on various geometries. This paper will explore the CFD modeling setup and the assumptions which were made in the absence of well experimental data in this combustor regime. Exploration of methodology to account for possible variations in chemical kinetics due to the lack of validated kinetic models in the current literature will also be discussed.
The results from the CFD runs will be discussed and the combustor design, and next steps to complete a detailed combustor design will also be discussed. This work will enable future work in the development of oxy-fuel combustors for direct fired sCO2 power. This promising technology enables the use of fossil fuels with up to 99% carbon capture, while maintaining an overall cycle efficiency competitive with natural gas combined cycle power plants.
Current research on supercritical carbon dioxide (SCO2) oxy-combustion is lacking studies on the performance of kinetic models. An optimized 13 species kinetic model is proposed in the present work for CH4/O2/CO2 oxy-combustion. This 13 species kinetic model is developed based on the detailed USC Mech II mechanism with the Global Pathway Selection algorithm, and then optimized with a genetic algorithm covering conditions of pressure from 150 atm to 300 atm, temperature from 900 K to 1800 K and equivalence ratio from 0.7 to 1.3. The autoignition of 13 species kinetic model presents less than 12% error relative to that of the USC Mech II. The performance of the proposed kinetic model is evaluated using a generic jet in crossflow combustor. Simulations at identical conditions are conducted in ANSYS Fluent for both the 13 species model and a global 5 species model. Results were then compared to evaluate the sensitivity of these two kinetic models to the CFD simulations. The results show a better mixing between the fuel and the oxygen, a longer autoignition delay and a more reasonable temperature distribution using the 13 species kinetic model. It is indicating the importance of choice on kinetic models in numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.