Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to Staphylococcus aureus. Host susceptibility factors are suggested by monogenic disorders associated with AD-like phenotypes and can be medically modulated. S. aureus contributes to AD pathogenesis and can be mitigated by antibiotics and bleach baths. Recent work has revealed that the skin microbiome differs significantly between healthy controls and patients with AD, including decreased Gram-negative bacteria in AD. However, little is known about the potential therapeutic benefit of microbiome modulation. To evaluate whether parameters of AD pathogenesis are altered after exposure to different culturable Gram-negative bacteria (CGN) collected from human skin, CGN were collected from healthy controls and patients with AD. Then, effects on cellular and culture-based models of immune, epithelial, and bacterial function were evaluated. Representative strains were evaluated in the MC903 mouse model of AD. We found that CGN taken from healthy volunteers but not from patients with AD were associated with enhanced barrier function, innate immunity activation, and control of S. aureus. Treatment with CGN from healthy controls improved outcomes in a mouse model of AD. These findings suggest that a live-biotherapeutic approach may hold promise for treatment of patients with AD.
The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a “post-antibiotic era”, the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use.
Background Antimicrobial resistance (AMR) is a major challenge in the treatment of infections caused by Pseudomonas aeruginosa. Highly drug-resistant infections are disproportionally caused by a small subset of globally distributed P. aeruginosa sequence types (STs), termed “high-risk clones.” We noted that clonal complex (CC) 446 (which includes STs 298 and 446) isolates were repeatedly cultured at 1 medical center and asked whether this lineage might constitute an emerging high-risk clone. Methods We searched P. aeruginosa genomes from collections available from several institutions and from a public database for the presence of CC446 isolates. We determined antibacterial susceptibility using microbroth dilution and examined genome sequences to characterize the population structure of CC446 and investigate the genetic basis of AMR. Results CC446 was globally distributed over 5 continents. CC446 isolates demonstrated high rates of AMR, with 51.9% (28/54) being multidrug-resistant (MDR) and 53.6% of these (15/28) being extensively drug-resistant (XDR). Phylogenetic analysis revealed that most MDR/XDR isolates belonged to a subclade of ST298 (designated ST298*) of which 100% (21/21) were MDR and 61.9% (13/21) were XDR. XDR ST298* was identified repeatedly and consistently at a single academic medical center from 2001 through 2017. These isolates harbored a large plasmid that carries a novel antibiotic resistance integron. Conclusions CC446 isolates are globally distributed with multiple occurrences of high AMR. The subclade ST298* is responsible for a prolonged epidemic (≥16 years) of XDR infections at an academic medical center. These findings indicate that CC446 is an emerging high-risk clone deserving further surveillance.
The “Western diet” is characterized by increased intake of saturated and omega-6 (n−6) fatty acids with a relative reduction in omega-3 (n−3) consumption. These fatty acids can directly and indirectly modulate the gut microbiome, resulting in altered host immunity. Omega-3 fatty acids can also directly modulate immunity through alterations in the phospholipid membranes of immune cells, inhibition of n−6 induced inflammation, down-regulation of inflammatory transcription factors, and by serving as pre-cursors to anti-inflammatory lipid mediators such as resolvins and protectins. We have previously shown that consumption by breeder mice of diets high in saturated and n−6 fatty acids have inflammatory and immune-modulating effects on offspring that are at least partially driven by vertical transmission of altered gut microbiota. To determine if parental diets high in n−3 fatty acids could also affect offspring microbiome and immunity, we fed breeding mice an n−3-rich diet with 40% calories from fat and measured immune outcomes in their offspring. We found offspring from mice fed diets high in n−3 had altered gut microbiomes and modestly enhanced anti-inflammatory IL-10 from both colonic and splenic tissue. Omega-3 pups were protected during peanut oral allergy challenge with small but measurable alterations in peanut-related serologies. However, n−3 pups displayed a tendency toward worsened responses during E. coli sepsis and had significantly worse outcomes during Staphylococcus aureus skin infection. Our results indicate excess parental n−3 fatty acid intake alters microbiome and immune response in offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.