Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alters the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation-incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myrs, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadialinterstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm/yr and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision Accepted ArticleThis article is protected by copyright. All rights reserved.phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7 to 14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation-incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine-grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.
Incremental slip rates of the Clarence fault, a dextral fault in the Marlborough fault system of South Island, New Zealand, varied by a factor of 4–5 during Holocene–latest Pleistocene time, as revealed by geomorphic mapping and luminescence dating of faulted fluvial landforms at the Tophouse Road site. We used high‐resolution lidar microtopographic data and field surveys to map the fine‐scale geomorphology and precisely restore the offset features. We dated the offsets using a stratigraphically informed protocol for infrared stimulated luminescence dating. These data show that incremental slip rates varied from ~2.0 to 9.6 mm/year, averaged over multiple earthquakes and millennial timescales. Comparison to incremental slip rates of the nearby Awatere fault suggests that these faults may behave in coordinated (and anticorrelated) fashion. This study adds to a growing body of evidence suggesting that incremental slip rate variation spanning multiple earthquake cycles may be more common than previously recognized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.