Background heart failure has become increasingly prevalent along with the aging population and the increased survival of acute ischemic heart events. Impairments of mitochondrial function in the heart are intricately linked to the development of heart failure but there is no therapy for mitochondrial dysfunction in the clinic. Methods and Results we report that NAD+ redox imbalance (increased NADH/NAD+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, are also present in human failing hearts as well as in mouse hearts with pathological hypertrophy. Elevation of NAD+ levels by stimulating the NAD+ salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD+ ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in ATP synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD+ redox balance either genetically or pharmacologically. Conclusions we show that mitochondrial protein hyperacetylation due to NAD+ redox imbalance contributes to the pathological remodeling of the heart via two distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD+ imbalance in the failing hearts. These findings have a high translational potential as the pharmacological strategy of increasing NAD+ precursors are feasible in human.
Summary Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (KO), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of hexosamine biosynthetic pathway in KO hearts decreased protein O-linked-N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.
Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.
Background: Increased fatty acid oxidation (FAO) has long been considered a culprit in the development of obesity/diabetes induced cardiomyopathy. However, enhancing cardiac FAO by removing the inhibitory mechanism of long-chain fatty acids transport into mitochondria via deletion of acetyl-CoA carboxylase 2 (ACC2) does not cause cardiomyopathy in non-obese mice, suggesting that high FAO is distinct from cardiac lipotoxicity. We hypothesize that cardiac pathology associated obesity is attributable to the imbalance of fatty acid supply and oxidation. Thus, we here seek to determine whether further increasing FAO by inducing ACC2 deletion prevents obesity induced cardiomyopathy, and if so, to elucidate the underlying mechanisms. Methods: We induced high FAO in adult mouse hearts by cardiac-specific deletion of ACC2 using a tamoxifen inducible model (ACC2 iKO). Control (Con) and ACC2 iKO mice were subjected to high fat diet (HFD) feeding for 24 weeks to induce obesity. Cardiac function, mitochondria function and mitophagy activity were examined. Results: Despite both Con and ACC2 iKO mice exhibiting similar obese phenotype, increasing FAO oxidation by deletion of ACC2 prevented HFD induced cardiac dysfunction, pathological remodeling as well as mitochondria dysfunction. Similarly, increasing FAO by knock down of ACC2 prevented palmitate induced mitochondria dysfunction and cardiomyocyte death in vitro. Furthermore, HFD suppressed mitophagy activity and caused damaged mitochondria to accumulate in the heart, which was partially attenuated in ACC2 iKO heart. Mechanistically, ACC2 iKO prevented HFD induced downregulation of parkin. During stimulation for mitophagy, mitochondria localized parkin was severely reduced in Con HFD-fed mouse heart, which was partially restored in ACC2 iKO HFD-fed mice. Conclusions: These data show that increasing cardiac FAO alone does not cause cardiac dysfunction but protect against cardiomyopathy in chronically obese mice. The beneficial effect of enhancing cardiac FAO in HFD induced obesity is mediated, in part, by maintenance of mitochondria function through regulating parkin mediated mitophagy. Our findings also suggest that targeting the parkin dependent mitophagy pathway could be an effective strategy against the development of obesity induced cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.