Ebolavirus causes severe hemorrhagic fever in humans and non-human primates. Entry of ebolavirus is mediated by the viral glycoprotein, GP; however, the required host factors have not been fully elucidated. A screen utilizing a recombinant Vesicular Stomatitis Virus (VSV) encoding Zaire ebolavirus GP identified four Chinese Hamster Ovary (CHO) cell lines resistant to GP-mediated viral entry. Susceptibility to vectors carrying SARS coronavirus S or VSV-G glycoproteins suggests that endocytic and processing pathways utilized by other viruses are intact in these cells. A cathepsin-activated form of the ebolaviral glycoprotein did not overcome the entry restriction, nor did expression of several host factors previously described as important for ebolavirus entry. Conversely, expression of the recently described ebolavirus host entry factor Niemann–Pick Type C1 (NPC1) restored infection. Resistant cells encode distinct mutations in the NPC1 gene, resulting in loss of protein expression. These studies reinforce the importance of NPC1 for ebolavirus entry.
The process of anaerobic digestion (AD) is valued as a carbon-neutral energy source, while simultaneously treating organic waste, making it safer for disposal or use as a fertilizer on agricultural land. The AD process in many European nations, such as This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jsfa.8005This article is protected by copyright. All rights reserved. Accepted ArticleGermany, has grown from use of small, localized digesters to the operation of large-scale treatment facilities, which contribute significantly to national renewable energy quotas.However, these large AD plants are costly to run and demand intensive farming of energy crops for feedstock. Current policy in Germany has transitioned to support funding for smaller digesters, while also limiting the use of energy crops. AD within Ireland, as a new technology, is affected by ambiguous governmental policies concerning waste and energy. A clear governmental strategy supporting on-site AD processing of agricultural waste will significantly reduce Ireland's carbon footprint, improve the safety and bioavailability of agricultural waste, and provide an indigenous renewable energy source.
Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism.
The water-borne protozoan parasite Cryptosporidium parvum forms oocysts that can persist for long periods of time in the environment, even though the sporozoites inside the oocysts may no longer be viable, making it difficult to assess the associated risk of infection. In this study, we compared the ability of various in vitro methods to discriminate viable from non-viable oocysts, including excystation, DAPI/PI staining, RNA FISH, PMA-qPCR and a novel polymer slide adhesion method. With the notable exception of our in vitro excystation protocol, all methods were found to be useful for identifying viable oocysts.
Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.