As Holocene river deltas continue to experience sea-level rise, sediment carried by distributary channels counteracts delta-plain drowning. Many deltas worldwide are subject to tidal action, which strongly affects the morphology of distributary channels and could also influence their mobility. Here we show, through physical laboratory experiments, that distributary-channel mobility can be dramatically reduced in systems affected by tides in comparison to an identical system with no tides, and that the mobility of distributary channels decreases as the ratio of tidal to fluvial energy increases. This effect occurs even if new accommodation space is created by rising relative sea level. By analyzing synthetic stratigraphy derived from both digital elevation data and time-lapse photography, we show also that the reduction of channel mobility in tidal deltas increases channel stacking and connectivity in the stratigraphic record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.