Elemental mapping using energy-dispersive x-ray spectroscopy in scanning transmission electron microscopy, a well-established technique for precision elemental concentration analysis at submicron resolution, was first demonstrated at atomic resolution in 2010. However, to date atomic resolution elemental maps have only been interpreted qualitatively because the elastic and thermal scattering of the electron probe confounds quantitative analysis. Accounting for this scattering, we present absolute scale quantitative comparisons between experiment and quantum mechanical calculations for both energy dispersive x-ray and electron energy-loss spectroscopy using off-axis reference measurements. The relative merits of removing the scattering effects from the experimental data against comparison with direct simulations are explored.
Crystalline interfaces in materials often govern the macroscopic functional properties owing to their complex structure and chemical inhomogeneity. For ionic crystals, however, such understanding has been precluded by the debatable local anion distribution across crystal interfaces. In this study, using yttria-stabilized zirconia as a model material, the oxygen vacancy distribution across individual grain boundaries was directly quantified by atomic-resolution scanning transmission electron microscopy with ultrahigh-sensitive energy-dispersive X-ray spectroscopy. Combined with dynamical scattering calculations, we unambiguously show that the relative oxygen concentrations increase in four high-angle grain boundaries, indicating that the oxygen vacancies are actually depleted near the grain boundary cores. These results experimentally evidence that the long-range electric interaction is the dominant factor to determine the local point defect distribution at ionic crystal interfaces.
We study the effects of specimen mistilt on the picometer-scale measurement of local structure by combing experiment and simulation in annular bright-field scanning transmission electron microscopy (ABF-STEM). A relative distance measurement method is proposed to separate the tilt effects from the scan noise and sample drift induced image distortion. We find that under a typical experimental condition a small specimen tilt (∼6 mrad) in 25 nm thick SrTiO along [001] causes 11.9 pm artificial displacement between O and Sr/TiO columns in ABF image, which is more than 3 times of scan noise and sample drift induced image distortion ∼3.2 pm, suggesting the tilt effect could be dominant for the quantitative analysis of ABF images. The artifact depends on the crystal mistilt angle, specimen thickness, defocus, convergence angle and uncorrected aberration. Our study provides useful insights into detecting and correcting tilt effects during both experiment operation and data analysis to extract the real structure information and avoid mis-interpretations of atomic structure as well as the properties such as oxygen octahedral distortion/shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.