Modulating the frequency of a harmonic oscillator at nearly twice its natural frequency leads to amplification and self-oscillation. Above the oscillation threshold, the field settles into a coherent oscillating state with a well-defined phase of either 0 or π. We demonstrate a quantum parametric oscillator operating at microwave frequencies and drive it into oscillating states containing only a few photons. The small number of photons present in the system and the coherent nature of the nonlinearity prevents the environment from learning the randomly chosen phase of the oscillator. This allows the system to oscillate briefly in a quantum superposition of both phases at onceeffectively generating a nonclassical Schrödinger's cat state. We characterize the dynamics and states of the system by analyzing the output field emitted by the oscillator and implementing quantum state tomography suited for nonlinear resonators. By demonstrating a quantum parametric oscillator and the requisite techniques for characterizing its quantum state, we set the groundwork for new schemes of quantum and classical information processing and extend the reach of these ubiquitous devices deep into the quantum regime. * These two authors contributed equally † safavi@stanford.edu 2⠆⠆ââ , whereâ is the annihilation operator of the resonator and χ/2π = 17.3 MHz is the resonator frequency shift per photon ( Fig. 2A). The linewidth of the resonator is κ/2π ≈ 1.1 MHz, which means that we are well within the single-photon Kerr regime [19] with χ/κ ≈ 17. The resonator frequency ω c /2π can be tuned arXiv:1901.09171v1 [quant-ph]
In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria.
Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm2. Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 × 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.