Exposure to cigarette smoking cues can trigger physiological arousal and desire to smoke. The brain substrates of smoking cue-induced craving (CIC) are beginning to be elucidated; however, it has been difficult to study this state independent of the potential contributions of pharmacological withdrawal from nicotine. Pharmacological withdrawal itself may have substantial effects on brain activation to cues, either by obscuring or enhancing it, and as CIC is not reduced by nicotine replacement strategies, its neuro-anatomical substrates may differ. Thus, characterizing CIC is critical for developing effective interventions. This study used arterial spin-labeled (ASL) perfusion fMRI, and newly developed and highly appetitive, explicit smoking stimuli, to examine neural activity to cigarette CIC in an original experimental design that strongly minimizes contributions from pharmacological withdrawal. Twenty-one smokers (12 females) completed smoking and nonsmoking cue fMRI sessions. Craving self-reports were collected before and after each session. SPM2 software was employed to analyze data. Blood flow (perfusion) in a priori-selected regions was greater during exposure to smoking stimuli compared to nonsmoking stimuli (po0.01; corrected) in ventral striatum, amygdala, orbitofrontal cortex, hippocampus, medial thalamus, and left insula. Perfusion positively correlated with intensity of cigarette CIC in both the dorsolateral prefrontal cortex (r 2 ¼ 0.54) and posterior cingulate (r 2 ¼ 0.53). This pattern of activation that includes the ventral striatum, a critical reward substrate, and the interconnected amygdala, cingulate and OFC, is consistent with decades of animal research on the neural correlates of conditioned drug reward. Keywords: cigarette smoking; craving; neuroimaging; ventral striatum; amygdala; DLPFC INTRODUCTION RationaleBoth nicotine and conditioned cues (reminders) maintain cigarette smoking and lead to relapse (Henningfield and Goldberg, 1983;Rose, 2006). Thus, effective smoking cessation treatments should address both factors. Nicotine replacement therapy (NRT) and bupropion are both effective at ameliorating nicotine withdrawal-induced craving, but neither block the craving elicited by learned associations formed between environmental cues and nicotine (Teneggi and Tiffany, 2002;Robinson and Berridge, 1993;Wise, 1988;Hughes et al, 1999;Hurt et al, 1997;Jorenby et al, 1999). Currently, medications that unequivocally prevent or reduce cue-induced craving (CIC) are not available. Further understanding of the underlying neurobiology of CIC would facilitate the development of effective therapies and improve the currently low (10-20% at 6 months to a year) success rates associated with current smoking interventions West et al, 2001). Thus, a major goal of this work is to examine the element of neurobiology underlying CIC distinct from that observed in CIC studies associated with nicotine withdrawal.Craving generated by drug cues may accrue slowly over time, recruiting supplementary neural substrates as...
BackgroundThe human brain responds to recognizable signals for sex and for rewarding drugs of abuse by activation of limbic reward circuitry. Does the brain respond in similar way to such reward signals even when they are “unseen”, i.e., presented in a way that prevents their conscious recognition? Can the brain response to “unseen” reward cues predict the future affective response to recognizable versions of such cues, revealing a link between affective/motivational processes inside and outside awareness?Methodology/Principal FindingsWe exploited the fast temporal resolution of event-related functional magnetic resonance imaging (fMRI) to test the brain response to “unseen” (backward-masked) cocaine, sexual, aversive and neutral cues of 33 milliseconds duration in male cocaine patients (n = 22). Two days after scanning, the affective valence for visible versions of each cue type was determined using an affective bias (priming) task. We demonstrate, for the first time, limbic brain activation by “unseen” drug and sexual cues of only 33 msec duration. Importantly, increased activity in an large interconnected ventral pallidum/amygdala cluster to the “unseen” cocaine cues strongly predicted future positive affect to visible versions of the same cues in subsequent off-magnet testing, pointing both to the functional significance of the rapid brain response, and to shared brain substrates for appetitive motivation within and outside awareness.Conclusions/SignificanceThese findings represent the first evidence that brain reward circuitry responds to drug and sexual cues presented outside awareness. The results underscore the sensitivity of the brain to “unseen” reward signals and may represent the brain's primordial signature for desire. The limbic brain response to reward cues outside awareness may represent a potential vulnerability in disorders (e.g., the addictions) for whom poorly-controlled appetitive motivation is a central feature.
We previously demonstrated differential activation of the mesocorticolimbic reward circuitry in response to cigarette cues independent of withdrawal. Despite robust effects, we noted considerable individual variability in brain and subjective responses. As dopamine (DA) is critical for reward and its predictive signals, genetically driven variation in DA transmission may account for the observed differences. Evidence suggests that a variable number of tandem repeats (VNTRs) polymorphism in the DA transporter (DAT) SLC6A3 gene may influence DA transport. Brain and behavioral responses may be enhanced in probands carrying the 9-repeat allele. To test this hypothesis, perfusion fMR images were acquired during cue exposure in 19 smokers genotyped for the 40 bp VNTR polymorphism in the SLC6A3 gene. Contrasts between groups revealed that 9-repeat (9-repeats) had a greater response to smoking (vs nonsmoking) cues than smokers homozygous for the 10-repeat allele (10/10-repeats) bilaterally in the interconnected ventral striatal/pallidal/orbitofrontal cortex regions (VS/VP/OFC). Activity was increased in 9-repeats and decreased in 10/10-repeats in the VS/VP/OFC (p<0.001 for all analyses). Brain activity and craving was strongly correlated in 10/10-repeats in these regions and others (anterior cingulate, parahippocampal gyrus, and insula; r2 = 0.79–0.86, p<0.001 in all regions). Alternatively, there were no significant correlations between brain and behavior in 9-repeats. There were no differences in cigarette dependence, demographics, or resting baseline neural activity between groups. These results provide evidence that genetic variation in the DAT gene contributes to the neural and behavioral responses elicited by smoking cues.
These data support the supposition that better treatment outcomes can be achieved by scheduling quit dates to coincide with the follicular phase of the MC in female smokers.
Background Preclinical studies confirm that the GABA B agonist, baclofen blocks dopamine release in the reward-responsive ventral striatum (VS) and medial prefrontal cortex, and consequently, blocks drug motivated behavior. Its mechanism in humans is unknown. Here, we used continuous arterial spin labeled (CASL) perfusion fMRI to examine baclofen’s effects on blood flow in the human brain. Methods Twenty-one subjects (all smokers, 12 females) were randomized to receive either baclofen (80 mg/day; N = 10) or placebo (N = 11). A five minute quantitative perfusion fMRI resting baseline (RB) scan was acquired at two time points; prior to the dosing regimen (Time 1) and on the last day of 21 days of drug administration (Time 2). SPM2 was employed to compare changes in RB from Time 1 to 2. Results Baclofen diminished cerebral blood flow (CBF) in the VS and mOFC and increased it in the lateral OFC, a region involved in suppressing previously rewarded behavior. CBF in bilateral insula was also blunted by baclofen (T values ranged from −11.29 to 15.3 at p = 0.001, 20 contiguous voxels). CBF at Time 2 was unchanged in placebo subjects. There were no differences between groups in side effects or cigarettes smoked per day (at either time point). Conclusions Baclofen’s modulatory actions on regions involved in motivated behavior in humans are reflected in the resting state and provide insight into the underlying mechanism behind its potential to block drug-motivated behavior, in preclinical studies, and its putative effectiveness as an anti-craving/anti-relapse agent in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.