This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volumelimited sample of 175 SNe, collect photometry for every object and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10 per cent), IIb (12 per cent) and IIn (9 per cent) in the SN II sample. Furthermore, we derive the LFs and the observed fractions of different SN subclasses in a magnitude-limited survey with different observation intervals, and find that the LFs are enhanced at the highluminosity end and appear more 'standard' with smaller scatter, and that the LFs and fractions of SNe do not change significantly when the observation interval is shorter than 10 d. We also discuss the LFs in different galaxy sizes and inclinations, and for different SN subclasses. Some notable results are that there is not a strong correlation between the SN LFs and the host-galaxy size, but there might be a preference for SNe IIn to occur in small, late-type spiral galaxies. The LFs in different inclination bins do not provide strong evidence for extreme extinction in highly inclined galaxies, though the sample is still small. The LFs of different SN subclasses show significant differences. We also find that SNe Ibc and IIb come from more luminous galaxies than SNe II-P, while SNe IIn come from less luminous galaxies, suggesting a possible metallicity effect. The limitations and applications of our LFs are also discussed.
We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47-18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/ FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope (HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with » T 8300 K, a radius of »Ŕ 4.5 10 14 cm (corresponding to an expansion velocity of » v c 0.3 ), and a bolometric luminosity of »Ĺ 5 10 bol 41 erg s −1 . At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/ NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of 56 Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has » . These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment.
We analyse the observed fractions of core-collapse supernova (SN) types from the Lick Observatory Supernova Search (LOSS), and we discuss the corresponding implications for massive star evolution. For a standard initial mass function, observed fractions of SN types cannot be reconciled with the expectations of single-star evolution. The mass range of Wolf-Rayet (WR) stars that shed their hydrogen envelopes via their own mass-loss accounts for less than half of the observed fraction of Type Ibc supernovae (SNe Ibc). The true progenitors of SNe Ibc must extend to a much lower range of initial masses than classical WR stars, and we argue that most SN Ibc and SN IIb progenitors must arise from binary Roche lobe overflow. In this scenario, SNe Ic would still trace higher initial mass and metallicity, because line-driven winds in the WR stage remove the helium layer and propel the transition from SN Ib to Ic. Less massive progenitors of SNe Ib and IIb may not be classical WR stars; they may be underluminous with weak winds, possibly hidden by overluminous mass-gainer companions that could appear as B[e] supergiants or related objects having aspherical circumstellar material. The remaining SN types (II-P, II-L and IIn) need to be redistributed across the full range of initial masses, so that even some very massive single stars retain H envelopes until explosion. We consider the possibility of direct collapse to black holes without visible SNe, but find this hypothesis difficult to accommodate in most scenarios. Major areas of remaining uncertainty are (1) the detailed influence of binary separation, rotation and metallicity; (2) mass differences in progenitors of SNe IIn compared to SNe II-L and II-P; and (3) the fraction of SNe Ic arising from single stars with the help of eruptive mass-loss, how this depends on metallicity and how it relates to diversity within the SN Ic subclass. Continued studies of progenitor stars and their environments in nearby galaxies, accounting for SN types, may eventually test these ideas.
We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about À22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took $70 days, and it stayed brighter than À21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of $10 51 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56 Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56 Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of $22 M , requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ''Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.