We report two new helicenes derived from the double fusion of an acene with two perylene diimide (PDI) subunits. These PDI-helicene homologs exhibit very different structural and electronic properties, despite differing by only a single ring in the link between the PDI units. The shorter inter-PDI link brings the two PDI subunits closer together, and this results in the collision of their respective π-electron clouds. This collision facilitates intramolecular through-space electronic delocalization when the PDI-helicene is reduced.
Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fusedring systems, namely, benzene-substituted dibenzothiopheno[6,5b:6′,5′-f ]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm 2 V −1 s −1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching−releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.
Quantum dot (QD) sensitized photon upconversion follows a multi-step energy transfer process from QD to transmitter ligand to a soluble annihilator. Using a novel 10-R-anthracene-1,8diphosphoric acid (R = octyl, 2-hexyldecyl, phenyl) ligand with high binding affinity for CdSe quantum dot (QD) surfaces, we demonstrate a photon upconversion process that is limited by the transmitter to annihilator transfer efficiency. Using 1 H NMR spectroscopy we demonstrate that these bidentate diphosphate ligands rapidly and irreversibly displace two carboxylate ligands. These ligands mediate energy transfer from the photoexcited QDs to a triplet annihilator (1,10-diphenylanthracene), producing overall photon upconversion quantum efficiencies as high as 17%, the highest for QDs with no shells. Transient absorption spectroscopy shows that the ADP ligand supports a 3.4 fold longer triplet state lifetime compared to 9-ACA (299.9 ± 9.5 vs 88.2 ± 2.1 μs), increasing the probability of the energy transfer.
We report the synthesis and characterization of a chiral, shape-persistent, perylene-diimide-based nanoribbon. Specifically, the fusion of three perylene-diimide monomers with intervening naphthalene subunits resulted in a helical superstructure with two [6]helicene subcomponents. This π-helix-of-helicenes exhibits very intense electronic circular dichroism, including one of the largest Cotton effects ever observed in the visible range. It also displays more than an order of magnitude increase in circular dichroism for select wavelengths relative to its smaller homologue. These impressive chiroptical properties underscore the potential of this new nanoribbon architecture in the context of chiral electronic materials.
Here we report the synthesis of two polyhelicene frameworks consisting, from end-to-end, of 18 and 24 fused benzene rings. The latter exhibits the largest electronic circular dichroism in the visible spectrum of any molecule. These shape-persistent helical nanoribbons incorporate multiple helicenes, a class of contorted polycyclic aromatic molecules consisting of ortho-annulated rings. These conjugated, chiral molecules have interesting chemical, biological, and chiroptical properties; however, there are very few helicenes with extraordinary chiroptical response over a broad range of the visible spectruma key criterion for applications such as chiral optoelectronics. In this report, we show that coupling the polyhelicene framework with multiple perylene-diimide subunits elicits a significant chiroptic response. Notably, the molar circular dichroism increases faster than the absorptivity of these molecules as their helical axis lengthens. Computational analysis reveals that the greatly amplified circular dichroism arises from exciton-like interactions between the perylene-diimide and the helicene moieties. We predict that even greater chiroptic enhancement will result from further axial elongation of these nanoribbons, which can be readily enabled via the iterative synthetic method presented herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.