Life span developmental profiles were constructed for 305 participants (ages 4-95) for a battery of paced and unpaced perceptual-motor timing tasks that included synchronize-continue tapping at a wide range of target event rates. Two life span hypotheses, derived from an entrainment theory of timing and event tracking, were tested. A preferred period hypothesis predicted a monotonic slowing of a preferred rate (tempo) of event tracking across the life span. An entrainment region hypothesis predicted a quadratic profile in the range of event rates that produced effective timing across the life span; specifically, age-specific entrainment regions should be narrower in childhood and late adulthood than in midlife. Findings across tasks provide converging support for both hypotheses. Implications of these findings are discussed for understanding critical periods in development and age-related slowing of event timing.
Accurate measurement and assessment of Parkinson's disease (PD) tremor is important for patients, clinicians, and researchers to track changes in disease progression and the effectiveness of therapeutic interventions. This study measured resting, postural, and kinetic tremor from patient's most-affected hand with accelerometers and gyrometers, thus the linear and rotational motions in the x, y, z directions were obtained. Data were collected when patients were both ON and OFF their anti-PD medications. A bandpass filter was applied to extract raw tremor information and several signal processing algorithms were used to analyze the data in both time and frequency domains, including the correlations between motions in different directions. The results of medication effectiveness on PD tremor and the correlational analyses were discussed.
The basal ganglia are thought to play a critical role in duration perception and production. However, experimental evidence for impaired temporal processing in Parkinson’s disease (PD) patients is mixed. This study examined the association between striatal dopaminergic denervation in PD patients and sensorimotor synchronization. Twenty-eight mild-to-moderate stage PD patients synchronized finger taps to tone sequences of either 500 ms, 1000 ms or 1500 ms time intervals while ON levodopa (L-DOPA) or placebo pill (on separate test days) with the index finger of their more and less affected hands. We measured the accuracy and variability of synchronization. In a separate session, patients underwent 11C-dihydrotetrabenazine (11C-DTBZ) PET scanning to measure in vivo striatal dopaminergic denervation. Patients were less accurate synchronizing to the 500 ms target time interval, compared to the 1000 and 1500 ms time intervals, but neither medication state nor hand affected accuracy; medication state, hand nor the target time interval affected synchronization variability. Regression analyses revealed no strong relationships between synchronization accuracy or variability and striatal dopaminergic denervation. We performed a cluster analysis on the degree of dopaminergic denervation to determine whether patient subgroup differences underlie our results. Three patient subgroups showed behavioral differences in synchronization accuracy, but not variability, paralleling their pattern of denervation. These findings provide further evidence for the role of the basal ganglia and dopamine in duration production and suggest that the degree of striatal dopaminergic denervation may explain the heterogeneity of performance between PD patients on the sensorimotor synchronization task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.