State-of-the-art methods for sensing weak AC fields are only efficient in the low frequency domain (<10 MHz). The inefficiency of sensing high-frequency signals is due to the lack of ability to use dynamical decoupling. In this paper we show that dynamical decoupling can be incorporated into high-frequency sensing schemes and by this we demonstrate that the high sensitivity achieved for low frequency can be extended to the whole spectrum. While our scheme is general and suitable to a variety of atomic and solid-state systems, we experimentally demonstrate it with the nitrogen-vacancy center in diamond. For a diamond with natural abundance of 13C, we achieve coherence times up to 1.43 ms resulting in a smallest detectable magnetic field strength of 4 nT at 1.6 GHz. Attributed to the inherent nature of our scheme, we observe an additional increase in coherence time due to the signal itself.
The coherence times achieved with continuous dynamical decoupling techniques are often limited by fluctuations in the driving amplitude. In this work, we use time-dependent phase-modulated continuous driving to increase the robustness against such fluctuations in a dense ensemble of nitrogen-vacancy centers in diamond. Considering realistic experimental errors in the system, we identify the optimal modulation strength, and demonstrate an improvement of an order of magnitude in the spin-preservation of arbitrary states over conventional single continuous driving. The phase-modulated driving exhibits comparable results to previously examined amplitude-modulated techniques, and is expected to outperform them in experimental systems having higher phase accuracy. The proposed technique could open new avenues for quantum information processing and many body physics, in systems dominated by high-frequency spin-bath noise, for which pulsed dynamical decoupling is less effective. PACS numbers: 76.30.Mi One of the main challenges in quantum information processing, quantum computing and quantum sensing is the preservation of arbitrary spin states. For example, the sensitivity of nitrogen-vacancy (NV) ensemble-based AC magneteometry scales as a square-root of the coherence time [1-8]. Moreover, long ensemble spin coherence times could open new avenues for studying many body dynamics of interacting spins [9-11]. The commonly used technique for improving coherence times and preserving arbitrary states is dynamical decoupling (DD) sequences [12-18]. Although pulsed DD is very efficient for a variety of physical systems, continuous driving-based decoupling (i.e. spin-lock) has an advantage when the power spectrum of the noise bath contains a significant contribution from high-frequency terms, such that relevant correlation times are shorter than the duty cycle achievable by pulsed techniques [15, 16]. However, in these continuous schemes, amplitude fluctuations of the driving source itself limit the achieved coherence times, raising the need for a fault tolerant driving [16, 18-23]. One common approach for overcoming fluctuations in the driving amplitude is to flip the phase of the continuous driving every time increment τ (i.e., to apply a "rotary echo", [24]). However, in the basis of the dressed states, these techniques are equivalent to pulsed DD, having the same disadvantages, such as additional imperfections due to the application of non-ideal pulses, and the disability of mitigating amplitude fluctuations that are faster than the flipping rate 1/τ. Another approach for overcoming these fluctuations is to apply an additional continuous driving in the perpendicular axis [Fig. 1(a)]. In order to avoid the use of an extra microwave (MW) source, the same effective Hamiltonian can be generated by a time-dependent modulation of the amplitude or phase of the original driving. Recently, such time-dependent amplitude modulation was experimentally demonstrated in a system of single isolated NV centers, achieving an order of magnitu...
The coherence times achieved with continuous dynamical decoupling techniques are often limited by fluctuations in the driving amplitude. In this work, we use time-dependent phase-modulated continuous driving to increase the robustness against such fluctuations in a dense ensemble of nitrogenvacancy centers in diamond. Considering realistic experimental errors in the system, we identify the optimal modulation strength, and demonstrate an improvement of an order of magnitude in the spinpreservation of arbitrary states over conventional single continuous driving. The phase-modulated driving exhibits comparable results to previously examined amplitude-modulated techniques, and is expected to outperform them in experimental systems having higher phase accuracy. The proposed technique could open new avenues for quantum information processing and many body physics, in systems dominated by high-frequency spin-bath noise, for which pulsed dynamical decoupling is less effective. PACS numbers: 76.30.MiOne of the main challenges in quantum information processing, quantum computing and quantum sensing is the preservation of arbitrary spin states. For example, the sensitivity of nitrogen-vacancy (NV) ensemble-based AC magneteometry scales as a square-root of the coherence time [1][2][3][4][5][6][7][8]. Moreover, long ensemble spin coherence times could open new avenues for studying many body dynamics of interacting spins [9][10][11]. The commonly used technique for improving coherence times and preserving arbitrary states is dynamical decoupling (DD) sequences [12][13][14][15][16][17][18]. Although pulsed DD is very efficient for a variety of physical systems, continuous driving-based decoupling (i.e. spin-lock) has an advantage when the power spectrum of the noise bath contains a significant contribution from high-frequency terms, such that relevant correlation times are shorter than the duty cycle achievable by pulsed techniques [15,16]. However, in these continuous schemes, amplitude fluctuations of the driving source itself limit the achieved coherence times, raising the need for a fault tolerant driving [16,[18][19][20][21][22][23].One common approach for overcoming fluctuations in the driving amplitude is to flip the phase of the continuous driving every time increment τ (i.e., to apply a "rotary echo", [24]). However, in the basis of the dressed states, these techniques are equivalent to pulsed DD, having the same disadvantages, such as additional imperfections due to the application of non-ideal pulses, and the disability of mitigating amplitude fluctuations that are faster than the flipping rate 1/τ . Another approach for overcoming these fluctuations is to apply an additional continuous driving in the perpendicular axis [ Fig. 1(a)]. In order to avoid the use of an extra microwave (MW) source, the same effective Hamiltonian can be generated by a time-dependent modulation of the amplitude or phase of the original driving. Recently, such time-dependent amplitude modulation was experimentally demonstrated in a system o...
In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them "fully" distrustful. In this Letter, we show that for bit commitment-one of the most basic primitives within the model-the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice's and Bob's cheating probabilities are ≃0.854 and 3/4, which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.