Background:Recurrence of glioma frequently occurs within the marginal area of the surgical cavity due to invading residual cells. 5-Aminolevulinic acid (5-ALA) fluorescence-guided resection has been used as effective therapeutic modalities to improve discrimination of brain tumour margins and patient prognosis. However, the marginal areas of glioma usually show vague fluorescence, which makes tumour identification difficult, and the applicability of 5-ALA-based photodynamic therapy (PDT) is hampered by insufficient therapeutic efficacy in glioma tissues.Methods:To overcome these issues, we assessed the expression of ferrochelatase (FECH) gene, which encodes a key enzyme that catalyses the conversion of protoporphyrin IX (PpIX) to heme, in glioma surgical specimens and manipulated FECH in human glioma cell lines.Results:Prominent downregulation of FECH mRNA expression was found in glioblastoma tissues compared with normal brain tissues, suggesting that FECH is responsible for PpIX accumulation in glioblastoma cells. Depletion of FECH by small interference RNA enhanced PpIX fluorescence after exposure to 5-ALA concomitant with increased intracellular PpIX accumulation in glioma cells. Silencing of FECH caused marked growth inhibition and apoptosis induction by PDT in glioma cells.Conclusion:These results suggest that knockdown of FECH is a potential approach to enhance PpIX fluorescent quality for optimising the subjective discrimination of vague fluorescence and improving the effect of 5-ALA-PDT.
Background:Glioma stem-like cell (GSC) properties are responsible for gliomagenesis and recurrence. GSCs are invasive but its mechanism remains to be elucidated. Here, we attempted to identify the molecules that promote invasion in GSCs.Methods:Neurospheres and CD133+ cells were collected from glioblastoma (GBM) specimens and glioma cell lines by sphere-formation method and magnetic affinity cell sorting, respectively. Differential expression of gene candidates, its role in invasion and its signaling pathway were evaluated in glioma cell lines.Results:Neurospheres from surgical specimens attached to fibronectin and laminin, the receptors of which belong to the integrin family. Integrin α3 was overexpressed in CD133+ cells compared with CD133− cells in all the glioma cell lines (4 out of 4). Immunohistochemistry demonstrated the localisation of integrin α3 in GBM cells, including invading cells, and in the tumour cells around the vessels, which is believed to be a stem cell niche. The expression of integrin α3 was correlated with migration and invasion. The invasion activity of glioma cells was linked to the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2.Conclusion:Our results suggest that integrin α3 contributes to the invasive nature of GSCs via ERK1/2, which renders integrin α3 a prime candidate for anti-invasion therapy for GBM.
Glycogen synthase kinase 3β (GSK3β) is a serine/threonine protein kinase involved in human cancers including glioblastoma. We have previously demonstrated that GSK3β inhibition enhances temozolomide effect in glioma cells. In this report, we investigated the molecular mechanisms of sensitization of glioblastoma cells to temozolomide by GSK3β inhibition, focusing on O(6)-methylguanine DNA methyltransferase (MGMT) gene silencing. Glioblastoma tissues from patients treated with the GSK3β-inhibiting drugs were subjected to immunohistochemistry and methylation-specific PCR assay. Human glioblastoma cell lines T98G, U138, U251 and U87 were treated with a small-molecule GSK3β inhibitor, AR-A014418 or GSK3β-specific small interfering RNA. The combined effect of temozolomide and AR-A014418 on cell proliferation was determined by AlamarBlue assay and an isobologram method. MGMT promoter methylation was estimated by methylation-specific PCR and MethyLight assay. MGMT gene expression was evaluated by real-time quantitative reverse transcriptase-PCR. c-Myc and DNA (cytosine-5)-methyltransferase 3A binding to the MGMT promoter was estimated by chromatin immunoprecipitation assay. GSK3β inhibition decreased phosphorylation of glycogen synthase and reduced MGMT expression and increased MGMT promoter methylation in clinical tumors. In glioblastoma cell lines, GSK3β inhibition decreased cell viability, enhanced temozolomide effect and downregulated MGMT expression with relevant changes in the methylation levels of the MGMT promoter. Here, we showed for the first time that c-Myc binds to the MGMT promoter with consequent recruitment of DNA (cytosine-5)-methyltransferase 3A, regulating the levels of MGMT promoter methylation. The results of this study suggest that GSK3β inhibition enhances temozolomide effect by silencing MGMT expression via c-Myc-mediated promoter methylation.
These data suggest that ligand-dependent EphB1 signaling negatively regulates glioma cell invasion, identifying EphB1 as a favorable prognostic factor in malignant glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.