Creatinine is actively secreted across tubular epithelial cells via organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1). We previously showed that the tyrosine kinase inhibitor (TKI) crizotinib inhibits OCT2-mediated transport of creatinine. In the present work, we examined the inhibitory potency of TKIs, including crizotinib, on MATE1-mediated transport of creatinine. Then, we used the kinetic parameters estimated in this and the previous work to predict the potential impact of TKIs on serum creatinine level (SCr) via reversible inhibition of creatinine transport. Crizotinib inhibited [14C]creatinine uptake by MATE1-overexpressing cells, and the inhibitory effect increased with incubation time, being greater in the case of pre-incubation or combined pre-incubation/co-incubation (pre/co-incubation) than in the case of co-incubation alone. The inhibition was non-competitive, with Ki values of 2.34 μM, 0.455 μM and 0.342 μM under co-, pre- or pre/co-incubation conditions, respectively. Similar values were obtained for inhibition of [3H]MPP+ uptake by MATE1-overexpressing cells. Gefitinib, imatinib, pazopanib, sorafenib, and sunitinib also inhibited MATE1-mediated creatinine uptake. Further, all these TKIs except pazopanib inhibited [14C]creatinine uptake by OCT2-overexpressing cells. In rat kidney slices, the ratio of unbound tissue accumulation of TKIs to extracellular concentration ranged from 2.05 to 3.93. Prediction of the influence of TKIs on SCr based on the renal creatinine clearance and plasma maximum unbound concentrations of TKIs suggested that crizotinib and imatinib might increase SCr by more than 10% in the clinical context. Accordingly, it is necessary to be cautious in diagnosing TKI-induced renal failure only on the basis of an increase of SCr.
Background: The advent of immune checkpoint inhibitors (ICIs) has significantly improved the prognosis of patients with advanced malignancies. On the other hand, these drugs might cause immune-related adverse events (irAEs) including endocrinopathies and nephropathies. Thyroid dysfunction is one of the most common irAEs. For ICIs-induced nephropathies, most cases are due to tubulointerstitial nephritis, which might require steroid treatment. Here, we report a patient with non-small cell lung cancer treated with ICI who developed increased serum creatinine (s-Cr) levels due to ICIs-induced hypothyroidism. Case presentation: A 57-year-old Asian man with refractory non-small cell lung cancer under ICIs therapy (pembrolizumab, an anti-programmed cell death-1 monoclonal antibody) developed increased s-Cr levels 5 months after the pembrolizumab initiation. His laboratory data, renal biopsy, and Gallium-67 scintigraphy findings denied pembrolizumab-induced tubulointerstitial nephritis. His renal function was correlated with thyroid function. Despite the increase of s-Cr levels, serum cystatin C levels were normal, which could be explained by the hypothyroidism. Levothyroxine treatment improved renal function as well as thyroid function. Then pembrolizumab was resumed, and both his thyroid and renal function remained normal level. Ultimately, we concluded that the increased s-Cr levels were caused by pembrolizumab-induced hypothyroidism. Conclusion: All clinicians involved in ICI treatment need to recognize the possible increase in s-Cr levels caused by ICIs-induced hypothyroidism, and we propose monitoring serum cystatin C levels to differentiate ICIs-induced hypothyroidism from tubulointerstitial nephritis before invasive renal biopsies or steroid treatment, which are recommended by the prescribing information for pembrolizumab, are performed.
Kidney plays a key role in the elimination and reabsorption of drugs and nutrients, however in vitro methods to evaluate renal disposition are limited. In the present study, we investigated usefulness of isolated kidney slice, which had been used for transport only at basolateral membrane of tubular epithelial cells, for evaluation of apical membrane transporters. As transporters that are easy to discriminate between apical and basolateral transports, apical membrane specific and sodium-dependent transporters (SGLTs and OCTNs) and pH-dependent transporters (PEPTs) are selected. Uptake of ergothioneine, carnitine and methyl-α-D-glucopyranoside, which are substrates of apical Octn1, Octn2, and Sglt1/2, respectively, by mice kidney slices showed clear Na+ dependence and reduction by selective inhibitors. In addition, sodium dependence of ergothioneine uptake was negligible in the kidney slice from Octn1-gene deficient mice. Moreover, uptake of PepT1/2 substrate glycyl-sarcosine, was higher than that in the presence of glycyl-leucine, a non-specific Pept inhibitor. The K m and IC 50 values for substrates and inhibitors of each transporter were mostly comparable to those obtained in transporter-transfected cells. In conclusion, it was demonstrated that kidney slices are promising tool to study transporters expressed at the apical membranes as well as basolateral membranes of kidney tubular epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.