Recently, Zn x Zr1–x O2–x catalysts have attracted attention as next-generation CO2-to-methanol hydrogenation catalysts. In this study, we examined the effect of the Zn content on CO2-to-methanol hydrogenation over Zn x Zr1–x O2–x catalysts and determined the active-site structure through both calculations and experiments. When the Zn content was low, Zn x Zr1–x O2–x contained Zn clusters (isolated [ZnO a ] clusters and [Zn b O c ] oligomers). The presence of clusters indicates the formation of Zn–O–Zr sites. Interestingly, our calculations revealed that the Zn species in the clusters are easily exposed on the Zn x Zr1–x O2–x surface. This result is in line with the experimental results, suggesting that Zn species were unevenly distributed on the Zn x Zr1–x O2–x surface and deposited near the surface. The addition of excess Zn to ZrO2 led to the formation of both Zn-containing clusters and ZnO nanoparticles. During the reactions, the Zn–O–Zr sites derived from the clusters showed specific activity for CO2-to-methanol hydrogenation. Understanding the active-site structure will lead to the future development of Zn x Zr1–x O2–x catalysts.
Bamboos are among the largest woody grasses and grow very rapidly. Although lignin is a crucial factor for the utilization of bamboo biomass, the lignification mechanism of bamboo shoots is poorly understood. We studied lignification in the bamboo Sinobambusa tootsik during culm development. Elongation growth began in May and ended in late-June, when the lignin content was approximately half that in mature culms. Thioacidolysis analysis indicated that p-hydroxyphenyl units in lignin formed even at late stages of lignification. The syringyl/ guaiacyl ratio varied during culm development. Various lignin precursors were detected in developing culms by liquid chromatography-mass spectrometry. The ferulic acid content decreased from May to June, indicating that ferulic acid was utilized in early stages of cell wall formation. Monolignol glucosides were detected at early stages of lignification, whereas the contents of monolignols, coniferaldehyde, sinapaldehyde, p-coumaric acid, and ferulic acid peaked at later stages of lignification. Therefore, lignin precursors may be supplied differentially during the lignification process. In August, the rate of lignification decreased, although the contents of various lignin precursors peaked, implying that the rate-limiting step in the cessation of lignification in bamboo is transport or polymerization of lignin precursors, rather than their biosynthesis.
: Lignin is the second most abundant natural polymer on Earth and is a major cell wall component in vascular plants. Lignin biosynthesis has three stages: biosynthesis, transport, and polymerization of its precursors. However, there is limited knowledge on lignin precursor transport, especially in monocots. In the present study, we aimed to elucidate the transport mode of lignin monomers in the lignifying tissues of bamboo (Phyllostachys pubescens). The growth manners and lignification processes of bamboo shoots were elucidated, which enabled us to obtain the lignifying tissues reproducibly. Microsomal membrane fractions were prepared from tissues undergoing vigorous lignification to analyze the transport activities of lignin precursors in order to show the ATP-dependent transport of coniferin and p-glucocoumaryl alcohol. The transport activities for both precursors depend on vacuolar type H+-ATPase and a H+ gradient across the membrane, suggesting that the electrochemical potential is the driving force of the transport of both substrates. These findings are similar to the transport properties of these lignin precursors in the differentiating xylem of poplar and Japanese cypress. Our findings suggest that transport of coniferin and p-glucocoumaryl alcohol is mediated by secondary active transporters energized partly by the vacuolar type H+-ATPase, which is common in lignifying tissues. The loading of these lignin precursors into endomembrane compartments may contribute to lignification in vascular plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.