Background Sri Lankan cassava mosaic virus (SLCMV) is a plant virus causing significant economic losses throughout Southeast Asia. While proteomics has the potential to identify molecular markers that could assist the breeding of virus resistant cultivars, the effects of SLCMV infection in cassava have not been previously explored in detail. Results Liquid Chromatography-Tandem Mass Spectrometry (LC/MS–MS) was used to identify differentially expressed proteins in SLCMV infected leaves, and qPCR was used to confirm changes at mRNA levels. LC/MS–MS identified 1,813 proteins, including 479 and 408 proteins that were upregulated in SLCMV-infected and healthy cassava plants respectively, while 109 proteins were detected in both samples. Most of the identified proteins were involved in biosynthetic processes (29.8%), cellular processes (20.9%), and metabolism (18.4%). Transport proteins, stress response molecules, and proteins involved in signal transduction, plant defense responses, photosynthesis, and cellular respiration, although present, only represented a relatively small subset of the detected differences. RT-qPCR confirmed the upregulation of WRKY 77 (A0A140H8T1), WRKY 83 (A0A140H8T7), NAC 6 (A0A0M4G3M4), NAC 35 (A0A0M5JAB4), NAC 22 (A0A0M5J8Q6), NAC 54 (A0A0M4FSG8), NAC 70 (A0A0M4FEU9), MYB (A0A2C9VER9 and A0A2C9VME6), bHLH (A0A2C9UNL9 and A0A2C9WBZ1) transcription factors. Additional upregulated transcripts included receptors, such as receptor-like serine/threonine-protein kinase (RSTK) (A0A2C9UPE4), Toll/interleukin-1 receptor (TIR) (A0A2C9V5Q3), leucine rich repeat N-terminal domain (LRRNT_2) (A0A2C9VHG8), and cupin (A0A199UBY6). These molecules participate in innate immunity, plant defense mechanisms, and responses to biotic stress and to phytohormones. Conclusions We detected 1,813 differentially expressed proteins infected cassava plants, of which 479 were selectively upregulated. These could be classified into three main biological functional groups, with roles in gene regulation, plant defense mechanisms, and stress responses. These results will help identify key proteins affected by SLCMV infection in cassava plants.
Cassava mosaic disease (CMD) is a major disease affecting cassava production in Southeast Asia. This study aimed to perform an integrated proteomics and metabolomics analysis of cassava cv. Kasetsart 50 infected with Sri Lankan cassava mosaic virus (SLCMV). Proteomics analyses revealed that 359 proteins were enriched in the plant–pathogen interaction, plant hormone signal transduction, and MAPK signaling pathways. A total of 79 compounds were identified by metabolomics analysis of the healthy and SLCMV-infected cassava plants. Integrated omics analysis revealed that 9 proteins and 5 metabolites were enriched in 11 KEGG pathways. The metabolic pathways, plant hormone signal transduction, and plant–pathogen interaction pathway terms were specifically investigated. The findings revealed that caffeic acid and chlorogenic acid were associated with the plant–pathogen interaction pathway, histidine (HK3) was involved in plant hormone signal transduction, while citric acid and D-serine were associated with the metabolic pathways. KEGG functional enrichment analysis revealed that plant–pathogen interaction, plant hormone signal transduction, and metabolic pathways were linked via the enriched protein (protein phosphatase 2C) and metabolites (cyclic nucleotide-binding (AT2G20050) and D-serine). The available information and resources for proteomics and metabolomics analyses of cassava can elucidate the mechanism of disease resistance and aid in cassava crop improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.