Abdominal aortic aneurysms cause 1.3% of all deaths among men aged 65-85 years in developed countries. These aneurysms are typically asymptomatic until the catastrophic event of rupture. Repair of large or symptomatic aneurysms by open surgery or endovascular repair is recommended, whereas repair of small abdominal aortic aneurysms does not provide a significant benefit. Abdominal aortic aneurysm is linked to the degradation of the elastic media of the atheromatous aorta. An inflammatory cell infiltrate, neovascularisation, and production and activation of various proteases and cytokines contribute to the development of this disorder, although the underlying mechanisms are unknown. In this Seminar, we aim to provide an updated review of the pathophysiology, current and new diagnostic procedures, assessment, and treatment of abdominal aortic aneurysm to provide family practitioners with a working knowledge of this disorder.
Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 x 10(-12)) and intracranial aneurysm (OR = 1.29, P = 2.5 x 10(-6)), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.
Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation (dissection) of the layers of the aortic wall. Aortic dissection is most common in those 65-75 years of age, with an incidence of 35 cases per 100,000 people per year in this population. Other risk factors include hypertension, dyslipidaemia and genetic disorders that involve the connective tissue, such as Marfan syndrome. Swift diagnostic confirmation and adequate treatment are crucial in managing affected patients. Contemporary management is multidisciplinary and includes serial non-invasive imaging, biomarker testing and genetic risk profiling for aortopathy. The choice of approach for repairing or replacing the damaged region of the aorta depends on the severity and the location of the dissection and the risks of complication from surgery. Open surgical repair is most commonly used for dissections involving the ascending aorta and the aortic arch, whereas minimally invasive endovascular intervention is appropriate for descending aorta dissections that are complicated by rupture, malperfusion, ongoing pain, hypotension or imaging features of high risk. Recent advances in the understanding of the underlying pathophysiology of aortic dissection have led to more patients being considered at substantial risk of complications and, therefore, in need of endovascular intervention rather than only medical or surgical intervention.
Aneurysm of the abdominal aorta (AAA) is a particular, specifically localized form of atherothrombosis, providing a unique human model of this disease. The pathogenesis of AAA is characterized by a breakdown of the extracellular matrix due to an excessive proteolytic activity, leading to potential arterial wall rupture. The roles of matrix metalloproteinases and plasmin generation in progression of AAA have been demonstrated both in animal models and in clinical studies. In the present review, we highlight recent studies addressing the role of the haemoglobin-rich, intraluminal thrombus and the adventitial response in the development of human AAA. The intraluminal thrombus exerts its pathogenic effect through platelet activation, fibrin formation, binding of plasminogen and its activators, and trapping of erythrocytes and neutrophils, leading to oxidative and proteolytic injury of the arterial wall. These events occur mainly at the intraluminal thrombus–circulating blood interface, and pathological mediators are conveyed outwards, where they promote matrix degradation of the arterial wall. In response, neo-angiogenesis, phagocytosis by mononuclear cells, and a shift from innate to adaptive immunity in the adventitia are observed. Abdominal aortic aneurysm thus represents an accessible spatiotemporal model of human atherothrombotic progression towards clinical events, the study of which should allow further understanding of its pathogenesis and the translation of pathogenic biological activities into diagnostic and therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.