Introduction:Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process.Materials and Methods:Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05.Results:A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups.Conclusions:Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via different mechanism(s).
Objectives
The aim of this study was to compare high-intensity interval exercise (HIIE) sessions prescribed on the basis of a maximal value (peak power output, PPO) and a submaximal value (lactate threshold, LT) derived from graded exercise tests (GXTs) in normoxia and hypoxia. Methods: A total of ten males (aged 18–37) volunteered to participate in this study. The experimental protocol consisted of a familiarization procedure, two GXTs under normoxia (FiO
2
= 0.209) and two GXTs under normobaric hypoxia (FiO2 = 0.140), and three HIIE sessions performed in a random order. The HIIE sessions included one at hypoxia (HY) and two at normoxia (one matched for the absolute intensity in hypoxia, designated as NA, and one matched for the relative intensity in hypoxia, designated as NR). Results: The data demonstrated that there was significant lower peak oxygen uptake (V̇O
2peak
), peak heart rate (HR
peak
), PPO, and LT derived from GXTs in hypoxia, with higher respiratory exchange ratio (RER), when compared to those from GXTs performed in normoxia (
p
< 0.001). Among the three HIIE sessions, the NA session resulted in lower percentage of HR
peak
(85.0 ± 7.5% vs 94.4 ± 5.0%;
p
= 0.002) and V̇O
2peak
(74.1 ± 9.1% vs 88.7 ± 7.7%;
p
= 0.005), when compared to the NR session. HIIE sessions in HY and NR resulted in similar percentage of HR
peak
and V̇O
2peak
, as well as similar rating of perceived exertion and RER. The blood lactate level increased immediately after all the three HIIE sessions (
p
< 0.001), while higher blood lactate concentrations were observed immediately after the HY (
p
= 0.0003) and NR (p = 0.014) sessions when compared with NA. Conclusion: Combining of PPO and LT derived from GXTs can be used to prescribe exercise intensity of HIIE in hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.