It has been universally delineated that the plasmonic metal nanoparticles can enhance the efficiency of photovoltaic cell by increasing the probability of energetic solar photons capturing phenomena using localized surface plasmonic resonance response. In this paper, we developed a novel in-situ simple approach to synthesize noble plasmonic silver nanoparticles (AgNP) from aqueous poly-vinyl-pyrrolidone solution of metal salt using radiolysis of water via synchrotron monochromatic X-ray irradiation without any chemical reducing agent. X-ray irradiation of water produces hydrated electrons , superoxide and atom radicals , which triggers the reaction and reduces metal salt. X-ray radiolysis based synthesis provides the control over the reaction and prevent the formation of secondary products as occurs in case of chemical reduction route. In the previous studies, synchrotron “white” X-rays had been examined for the synthesis of metal nanoparticles, but that technique limits only upto the material synthesis while in this work we explored the role of “monochromatic” X-rays for the production of bulk amount of nanoparticles which would also provide the feasibility of in-situ characterization. Transmission electron micrographs show that the synthesized AgNP appears spherical with diameter of 2–6 nm and is in agreement with the size estimation from uv-vis spectra by “Mie theory”.
Electrical measurements are done on Se 85−x Te 15 In x (x = 0, 2, 4, 6 and 10 at%) thin films. The dark conductivity (σ d ) increases and the activation energy ( E d ) decreases as the In concentration increases. The photoconductivity (σ ph ) also increases with the increase in In concentration. The photosensitivity (σ ph /σ d ) decreases sharply after the In incorporation. The charge carrier concentration (n σ ) is calculated with the help of dc conductivity measurements. The value of n σ increases as the In concentration increases. The results are explained on the basis of an increase in the density of localized states present in the mobility gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.