Nephrotoxicity is a major complication and a dose limiting factor for cisplatin therapy. Recent evidence suggests that inflammation and oxidative stress may contribute to the pathogenesis of cisplatin-induced acute renal failure. Curcumin is claimed to be a potent anti-inflammatory and antioxidant agent. The present study was performed to explore the effect of curcumin against cisplatin-induced experimental nephrotoxicity. Curcumin in the dosages of 15, 30, and 60 mg kg(-1) was administered 2 days before and 3 days after cisplatin administration. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen, creatinine, urea clearance, and serum nitrite levels. Renal oxidative stress was assessed by determining renal malondialdehyde levels, reduced glutathione levels and enzymatic activities of superoxide dismutase and catalase. Systemic inflammation was assessed by tumor necrosis factor-alpha (TNF-alpha) levels. A single dose of cisplatin resulted in marked inflammation (486% rise in TNF-alpha level) and oxidative stress and significantly deranged renal functions as well as renal morphology. The serum TNF-alpha level was markedly reduced in curcumin-treated rats. Curcumin treatment significantly and dose-dependently restored renal function, reduced lipid peroxidation, and enhanced the levels of reduced glutathione and activities of superoxide dismutase and catalase. The present study demonstrates that curcumin has a protective effect on cisplatin-induced experimental nephrotoxicity, and this effect is attributed to its direct anti-inflammatory and strong antioxidant profile. Hence, curcumin has a strong potential to be used as a therapeutic adjuvant in cisplatin nephrotoxicity.
BackgroundCCl4 is a well-established hepatotoxin inducing liver injury by producing free radicals. Exposure to CCl4 also induces acute and chronic renal injuries. The present study was designed to establish the protective effect of hesperidin (HDN), a citrus bioflavonoid, on CCl4-induced oxidative stress and resultant dysfunction of rat liver and kidney.MethodsAnimals were pretreated with HDN (100 and 200 mg/kg orally) for one week and then challenged with CCl4 (2 ml/kg/s.c.) in olive oil. Rats were sacrificed by carotid bleeding under ether anesthesia. Liver enzymes, urea and creatinine were estimated in serum. Oxidative stress in liver and kidney tissue was estimated using Thiobarbituric acid reactive substances (TBARS), glutathione (GSH) content, superoxide dismutase(SOD), and Catalase (CAT)ResultsCCl4 caused a marked rise in serum levels of ALT and AST (P < 0.05). TBARS levels were significantly increased whereas GSH, SOD and CAT levels decreased in the liver and kidney homogenates of CCl4 treated rats. HDN (200 mg/kg) successfully attenuated these effects of CCl4ConclusionIn conclusion, our study demonstrated a protective effect of HDN in CCl4 induced oxidative stress in rat liver and kidney. This protective effect of HDN can be correlated to its direct antioxidant effect.
SummaryThe present study is aimed at investigating the effect of curcumin (CMN) in salvaging endotoxin-induced hepatic dysfunction and oxidative stress in the liver of rodents. Hepatotoxicity was induced by administering lipopolysaccharide (LPS) in a single dose of 1 mg/kg intraperitoneally to the animals, which were being treated with CMN daily for 7 days. Liver enzymes serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST) and alkaline phosphatase (ALP), total bilirubin and total protein were estimated in serum. Oxidative stress in liver tissue homogenates was estimated by measuring thiobarbituric acid reactive substances (TBARS), glutathione (GSH) content and superoxide dismutase (SOD) activity. Serum and tissue nitrite was estimated using Greiss reagent and served as an indicator of NO production. A separate set of experiments was performed to estimate the effect of CMN on cytokine levels in mouse serum after LPS challenge. LPS induced a marked hepatic dysfunction evident by rise in serum levels of ALT, AST, ALP and total bilirubin ( P < < < < 0·05). TBARS levels were significantly increased, whereas GSH and SOD levels decreased in the liver homogenates of LPS-challenged rats. CMN administration attenuated these effects of LPS successfully. Further CMN treatment also regressed various structural changes induced by LPS in the livers of rats and decreased the levels of tumour necrosis factor-α α α α and interleukin-6 in mouse plasma. In conclusion, these findings suggest that CMN attenuates LPS-induced hepatotoxicity possibly by preventing cytotoxic effects of NO, oxygen free radicals and cytokines.
BackgroundIn India, Curcumin (CMN) is popularly known as "Haldi", and has been well studied due to its economic importance. Traditional Indian medicine claims the use of its powder against biliary disorders, anorexia, coryza, cough, diabetic wounds, hepatic disorder, rheumatism and sinusitis. This study was designed to examine the possible beneficial effect of CMN in preventing the acute renal failure and related oxidative stress caused by chronic administration of cyclosporine (CsA) in rats. CMN was administered concurrently with CsA (20 mg/kg/day s.c) for 21 days. Oxidative stress in kidney tissue homogenates was estimated using thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) content, superoxide dismutase (SOD), and Catalase (CAT). Nitrite levels were estimated in serum and tissue homogenates.ResultsCsA administration for 21 days produced elevated levels of TBARS and marked depletion of renal endogenous antioxidant enzymes and deteriorated the renal function as assessed by increased serum creatinine, Blood Urea Nitrogen (BUN) and decreased creatinine and urea clearance as compared to vehicle treated rats. CMN markedly reduced elevated levels of TBARS, significantly attenuated renal dysfunction increased the levels of antioxidant enzymes in CsA treated rats and normalized the altered renal morphology.ConclusionIn conclusion our study showed that CMN through its antioxidant activity effectively salvaged CsA nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.