One approach to designing structured low-density parity-check (LDPC) codes with large girth is to shorten codes with small girth in such a manner that the deleted columns of the parity-check matrix contain all the variables involved in short cycles. This approach is especially effective if the parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is the case for the class of codes known as array codes. We show how to shorten array codes by deleting certain columns of their parity-check matrices so as to increase their girth. The shortening approach is based on the observation that for array codes, and in fact for a slightly more general class of LDPC codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear equations with integer coefficients. Consequently, we can selectively eliminate cycles from an array code by only retaining those columns from the parity-check matrix of the original code that are indexed by integer sequences that do not contain solutions to the equations governing those cycles. We provide Ramsey-theoretic estimates for the maximum number of columns that can be retained from the original parity-check matrix with the property that the sequence of their indices avoid solutions to various types of cycle-governing equations. This translates to estimates of the rate penalty incurred in shortening a code to eliminate cycles. Simulation results show that for the codes considered, shortening them to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication over an additive white Gaussian noise channel.Comment: 16 pages; 8 figures; to appear in IEEE Transactions on Information Theory, Aug 200
We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple access (MAC) channel, and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message; and strong secrecy, which is a form of asymptotic independence.We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain "goodness" properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multi-hop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.
In terabit-density magnetic recording, several bits of data can be replaced by the values of their neighbors in the storage medium. As a result, errors in the medium are dependent on each other and also on the data written. We consider a simple one-dimensional combinatorial model of this medium. In our model, we assume a setting where binary data is sequentially written on the medium and a bit can erroneously change to the immediately preceding value. We derive several properties of codes that correct this type of errors, focusing on bounds on their cardinality. We also define a probabilistic finite-state channel model of the storage medium, and derive lower and upper estimates of its capacity. A lower bound is derived by evaluating the symmetric capacity of the channel, i.e., the maximum transmission rate under the assumption of the uniform input distribution of the channel. An upper bound is found by showing that the original channel is a stochastic degradation of another, related channel model whose capacity we can compute explicitly.Comment: Submitted to IEEE Transactions on Information Theor
The focus of this paper is on the public communication required for generating a maximal-rate secret key (SK) within the multiterminal source model of Csiszár and Narayan. Building on the prior work of Tyagi for the twoterminal scenario, we derive a lower bound on the communication complexity, RSK, defined to be the minimum rate of public communication needed to generate a maximal-rate SK. It is well known that the minimum rate of communication for omniscience, denoted by RCO, is an upper bound on RSK. For the class of pairwise independent network (PIN) models defined on uniform hypergraphs, we show that a certain "Type S" condition, which is verifiable in polynomial time, guarantees that our lower bound on RSK meets the RCO upper bound. Thus, PIN models satisfying our condition are RSK-maximal, meaning that the upper bound RSK ≤ RCO holds with equality. This allows us to explicitly evaluate RSK for such PIN models. We also give several examples of PIN models that satisfy our Type S condition. Finally, we prove that for an arbitrary multiterminal source model, a stricter version of our Type S condition implies that communication from all terminals ("omnivocality") is needed for establishing a SK of maximum rate.For three-terminal source models, the converse is also true: omnivocality is needed for generating a maximal-rate SK only if the strict Type S condition is satisfied. Counterexamples exist that show that the converse is not true in general for source models with four or more terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.