We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple access (MAC) channel, and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message; and strong secrecy, which is a form of asymptotic independence.We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain "goodness" properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multi-hop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.
We study the list decodability of different ensembles of codes over the real alphabet under the assumption of an omniscient adversary. It is a well-known result that when the source and the adversary have power constraints P and N respectively, the list decoding capacity is equal to 1 2 log P N . Random spherical codes achieve constant list sizes, and the goal of the present paper is to obtain a better understanding of the smallest achievable list size as a function of the gap to capacity. We show a reduction from arbitrary codes to spherical codes, and derive a lower bound on the list size of typical random spherical codes. We also give an upper bound on the list size achievable using nested Construction-A lattices and infinite Construction-A lattices. We then define and study a class of infinite constellations that generalize Construction-A lattices and prove upper and lower bounds for the same. Other goodness properties such as packing goodness and AWGN goodness of infinite constellations are proved along the way. Finally, we consider random lattices sampled from the Haar distribution and show that if a certain number-theoretic conjecture is true, then the list size grows as a polynomial function of the gap-to-capacity.
This paper investigates data compression that simultaneously allows local decoding and local update. The main result is a universal compression scheme for memoryless sources with the following features. The rate can be made arbitrarily close to the entropy of the underlying source, contiguous fragments of the source can be recovered or updated by probing or modifying a number of codeword bits that is on average linear in the size of the fragment, and the overall encoding and decoding complexity is quasilinear in the blocklength of the source. In particular, the local decoding or update of a single message symbol can be performed by probing or modifying a constant number of codeword bits. This latter part improves over previous best known results for which local decodability or update efficiency grows logarithmically with blocklength.
We study achievable rates of reliable communication in a power-constrained two-way additive interference channel over the real alphabet where communication is disrupted by a power-constrained jammer. This models the wireless communication scenario where two users Alice and Bob, operating in the full duplex mode, wish to exchange messages with each other in the presence of a jammer, James. Alice and Bob simultaneously transmit their encodings x A and x B over n channel uses. It is assumed that James can choose his jamming signal s as a noncausal randomized function of x A and x B , and the codebooks used by Alice and Bob. Alice and Bob observe x A`xB`s , and must recover each others' messages reliably. In this article, we provide upper and lower bounds on the capacity of this channel which match each other and equal 1 2 log`1 2`S NR˘in the high-SNR regime (where SNR, signal to noise ratios, is defined as the ratio of the power constraints of the users to the power constraint of the jammer). We give a code construction based on lattice codes, and derive achievable rates for large SNR. We also present upper bounds based on two specific attack strategies for James. Along the way, sumset property of lattices for the achievability and general properties of capacity-achieving codes for memoryless channels for the converse are proved, which might be of independent interest. 1 2 log`1 2`P N˘i s the capacity in high-SNR regime, we do not believe that this is tight in all regimes. Our intuition comes from the following improved converse result. We are able to push the boundary of zero-rate regime inward via certain symmetrization strategy which we call z-aware symmetrization.Theorem 5 (Converse). For a pP, N q quadratically constrained two-way adversarial channel, neither of the users can achieve positive rate if N ą 3P {4, or SNR ă 4{3.Again, the above theorem can be trivially generalized to the asymmetric case which reads as follows.Theorem 6 (Converse). For a pP A , P B , N A , N B q quadratically constrained two-way adversarial channel, user one cannot achieve positive rate if N A ą 2P B`PA 4
We study communication in the presence of a jamming adversary where quadratic power constraints are imposed on the transmitter and the jammer. The jamming signal is allowed to be a function of the codebook, and a noncausal but noisy observation of the transmitted codeword. For a certain range of the noise-to-signal ratios (NSRs) of the transmitter and the jammer, we are able to characterize the capacity of this channel under deterministic encoding or stochastic encoding, i.e., with no common randomness between the encoder/decoder pair. For the remaining NSR regimes, we determine the capacity under the assumption of a small amount of common randomness (at most 2 log(n) bits in one sub-regime, and at most Ω(n) bits in the other sub-regime) available to the encoder-decoder pair. Our proof techniques involve a novel myopic list-decoding result for achievability, and a Plotkin-type push attack for the converse in a subregion of the NSRs, both of which may be of independent interest. We also give bounds on the strong secrecy capacity of this channel assuming that the jammer is simultaneously eavesdropping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.