This particular research was conducted with the aim of describing the impact of a rotating nanoliquid on an elasting surface. This specific study was carried out using a two-phase nanoliquid model. In this study engine oil is used as the base fluid, and two forms of nanoparticles are used, namely, titanium oxide and zinc oxide (TiO2 and ZnO). Using appropriate similarity transformations, the arising system of partial differential equations and the related boundary conditions are presented and then converted into a system of ordinary differential equations. These equations are numerically tackled using powerful techniques. Graphs for nanoparticle rotation parameter and volume fraction for both types of nanoparticles present the results for the velocity and heat transfer features. Quantities of physical significance are measured and evaluated, such as local heat flux intensity and local skin friction coefficients at the linear stretching surface. Numerical values for skin friction and local heat flux amplitude are determined in the presence of slip factor.
This paper focuses on studying thermal, elastic and coupled plasma waves, in the sense of a photo-thermal process transport within an infinite semiconductor medium. In order to study photo-thermal interactions in two-dimensional semiconducting materials, a new mathematical model based on the Moore–Gibson–Thompson equation (MGTE) is implemented. The MGTE model involving the Green–Naghdi model of type III as well as the heat transport equation proposed by Lord and Shulman. We consider the semi-conductor half-space is rotated at a uniform angular speed and magnetized. The analysis of the distribution of thermophysical fields has been extracted by a normal mode method, represented graphically and discussed. The results predicted by the new and improved model have been compared with the generalized and classic ones. In addition, all field quantities have been examined for effects of rotation, a lifetime of the photo-generated, and the applied magnetic field.
In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water–alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact of the variations of undulations number (0 ≤ N ≤ 5), Ra (103 ≤ Ra ≤ 106), Ha (0 ≤ Ha ≤ 100), and angular rotational velocity (− 500 ≤ Ω ≤ 500) were presented. Isotherms distribution, streamlines and isentropic lines are displayed. The governing equations are verified by using the Galerkin Finite Element Method (GFEM). The Nusselt numbers are calculated and displayed graphically for several parametric studies. The computational calculations were carried out using Buongiorno's non-homogeneous model. To illustrate the studied problem, a thorough discussion of the findings was conducted. The results show the enhacement of the maximum value of the flow function and the heat transfer process by increasing the value of Rayleigh number. Furthermore the irreversibility is primarily governed by the heat transfer component and the increment of the waviness of the active surfaces or the cylinder rotational velocity or hartmann number will suppress the fluid motion and hinders the heat transfer process.
The suspension of tiny solid particles inside the energy transport liquids could enhance their thermal conductivity as well as provide an efficient and inventive approach to significantly improve their properties of heat transport. Therefore, our aim is to explore the radiative two-dimensional unsteady flow of a viscous nanofluid about an aligned magnetic field that includes the joint effect of suction, velocity slip, and heat source across a porous convective stretching/shrinking surface. Initially, using non-dimensional variables, the nonlinear governing partial differential equations (PDEs) were transformed into ordinary differential equations (ODEs) which were subsequently solved with the help of bvp4c built-in package in MATLAB. The results declare that escalating the values of the unsteadiness parameter escalates the friction drag whereas it reduces with the escalation of the slip parameter. Furthermore, the heat transfer rate escalates with the escalation of radiation and concentration parameter, and the escalation of the heat source parameter causes to reduce the heat transfer rate. Finally, it is found that the rate of heat transfer and friction drag continuously improve and decline against the rising rates of stretching, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.