Electricity load prediction is the primary basis on which power-related departments to make logical and effective generation plans and scientific scheduling plans for the most effective power utilization. The perpetual evolution of deep learning has recommended advanced and innovative concepts for short-term load prediction. Taking into consideration the time and nonlinear characteristics of power system load data and further considering the impact of historical and future information on the current state, this paper proposes a Seq2seq short-term load prediction model based on a long short-term memory network (LSTM). Firstly, the periodic fluctuation characteristics of users’ load data are analyzed, establishing a correlation of the load data so as to determine the model’s order in the time series. Secondly, the specifications of the Seq2seq model are given preference and a coalescence of the Residual mechanism (Residual) and the two Attention mechanisms (Attention) is developed. Then, comparing the predictive performance of the model under different types of Attention mechanism, this paper finally adopts the Seq2seq short-term load prediction model of Residual LSTM and the Bahdanau Attention mechanism. Eventually, the prediction model obtains better results when merging the actual power system load data of a certain place. In order to validate the developed model, the Seq2seq was compared with recurrent neural network (RNN), LSTM, and gated recurrent unit (GRU) algorithms. Last but not least, the performance indices were calculated. when training and testing the model with power system load data, it was noted that the root mean square error (RMSE) of Seq2seq was decreased by 6.61%, 16.95%, and 7.80% compared with RNN, LSTM, and GRU, respectively. In addition, a supplementary case study was carried out using data for a small power system considering different weather conditions and user behaviors in order to confirm the applicability and stability of the proposed model. The Seq2seq model for short-term load prediction can be reported to demonstrate superiority in all areas, exhibiting better prediction and stable performance.
With the integration of highly permeable renewable energy to the grid at different levels (transmission, distribution and grid-connected), the volatility on both sides (source side and load side) leading to bidirectional power flow in the power grid complicates the control mechanism. In order to ensure the real-time power balance, energy exchange, higher energy utilization efficiency and stability maintenance in the electric power system, this paper proposes an integrated application of blockchain technology on energy routers at transmission and distribution networks with increased renewable energy penetration. This paper focuses on the safe and stable operation of a highly penetrated renewable energy grid-connected power system and its operation. It also demonstrates a blockchain-based negotiation model with weakly centralized scenarios for “source-network-load” collaborative scheduling operations; secondly, the QoS (quality of service) index of energy flow control and energy router node doubly-fed stability control model were designed. Further, it also introduces the MOPSO (multi-objective particle swarm optimization) algorithm for power output optimization of multienergy power generation; Thirdly, based on the blockchain underlying architecture and load prediction value constraints, this paper puts forward the optimization mechanism and control flow of autonomous energy coordination of b2u (bottom-up) between router nodes of transmission and distribution network based on blockchain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.