An improved microwave method to extract the complex permittivity of solid and liquid materials filled in a short-circuited waveguide is developed. The method determines accurately the dielectric constant of thin and moderate thick samples. It eliminates the problems arising from any position offset of the dielectric slab in transmission / reflection methods. The proposed method is iterative and the initial value is calculated by using the 7th approximation order of trigonometric terms in the exact reflection coefficient equation. This approach is applied to the simulated data of low loss and dissipative materials in limited frequency band.
This article presents new structures and methods of design of miniature third-order substrate integrated waveguide (SIW) bandpass filters on a high-permittivity ceramic substrate for the C-band. The aim was to appraise the feasibility of such filters by using a 3D electromagnetic (EM) simulator. The substrate integrated waveguide (SIW) offers good quality factors and electrical performances compared with other planar techniques. Its integration capabilities and fabrication cost are other benefits that make it attractive. Ceramic material offer electrical properties suitable in designing of passive devices. High relative permittivity with low dielectric losses makes it possible to miniaturize passive components while exhibiting high temperature stability, which is an important selection criterion for a filter designed to equip the payload of a satellite. Three SIW filters were designed on a Trans-Tech ceramic substrate (thickness = 254 mm, er = 90, and tand = 0.0009) with drastic specifications for space application. The first filter is composed of three SIW resonators with direct coupling, the second is composed of three SIW resonators with a cross-coupling to create a transmission zero, and the third is composed of three SIW resonators with circular holes etched on the top of the metal layer to achieve a super-wide band. The obtained results for the proposed filters are presented, discussed, and compared with relevant published literature. The proposed filter can be used to enhance the performance of microwave devices used for C-band, especially Satellite communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.