Background To devise treatment strategies for neonatal infections, the population-level incidence and antibiotic susceptibility of pathogens must be defined. Methods Surveillance for suspected neonatal sepsis was conducted in Mirzapur, Bangladesh, from February 2004 through November 2006. Community health workers assessed neonates on postnatal days 0, 2, 5, and 8 and referred sick neonates to a hospital, where blood was collected for culture from neonates with suspected sepsis. We estimated the incidence and pattern of community-acquired neonatal bacteremia and determined the antibiotic susceptibility profile of pathogens. Results The incidence rate of community-acquired neonatal bacteremia was 3.0 per 1000 person–neonatal periods. Among the 30 pathogens identified, the most common was Staphylococcus aureus (n = 10); half of all isolates were gram positive. Nine were resistant to ampicillin and gentamicin or to ceftiaxone, and 13 were resistant to cotrimoxazole. Conclusion S. aureus was the most common pathogen to cause community-acquired neonatal bacteremia. Nearly 40% of infections were identified on days 0–3, emphasizing the need to address maternal and environmental sources of infection. The combination of parenteral procaine benzyl penicillin and an aminoglycoside is recommended for the first-line treatment of serious community-acquired neonatal infections in rural Bangladesh, which has a moderate level of neonatal mortality. Additional population-based data are needed to further guide national and global strategies. Trial registration ClinicalTrials.gov identifier: NCT00198627.
IPD contributes substantially to childhood morbidity in rural Bangladesh. S. pneumoniae can cause invasive but nonsevere disease in children, and IPD incidence can be seriously under reported if such cases are overlooked. The emerging high resistance to trimethoprim-sulfamethoxazole should be addressed. Data on serotype distribution would help to guide appropriate pneumococcal conjugate vaccine formulation.
Background There is limited data on antibiotic treatment in hospitalized neonates in low- and middle-income countries (LMICs). We aimed to describe patterns of antibiotic use, pathogens, and clinical outcomes, and to develop a severity score predicting mortality in neonatal sepsis to inform future clinical trial design. Methods and findings Hospitalized infants <60 days with clinical sepsis were enrolled during 2018 to 2020 by 19 sites in 11 countries (mainly Asia and Africa). Prospective daily observational data was collected on clinical signs, supportive care, antibiotic treatment, microbiology, and 28-day mortality. Two prediction models were developed for (1) 28-day mortality from baseline variables (baseline NeoSep Severity Score); and (2) daily risk of death on IV antibiotics from daily updated assessments (NeoSep Recovery Score). Multivariable Cox regression models included a randomly selected 85% of infants, with 15% for validation. A total of 3,204 infants were enrolled, with median birth weight of 2,500 g (IQR 1,400 to 3,000) and postnatal age of 5 days (IQR 1 to 15). 206 different empiric antibiotic combinations were started in 3,141 infants, which were structured into 5 groups based on the World Health Organization (WHO) AWaRe classification. Approximately 25.9% (n = 814) of infants started WHO first line regimens (Group 1—Access) and 13.8% (n = 432) started WHO second-line cephalosporins (cefotaxime/ceftriaxone) (Group 2—“Low” Watch). The largest group (34.0%, n = 1,068) started a regimen providing partial extended-spectrum beta-lactamase (ESBL)/pseudomonal coverage (piperacillin-tazobactam, ceftazidime, or fluoroquinolone-based) (Group 3—“Medium” Watch), 18.0% (n = 566) started a carbapenem (Group 4—“High” Watch), and 1.8% (n = 57) a Reserve antibiotic (Group 5, largely colistin-based), and 728/2,880 (25.3%) of initial regimens in Groups 1 to 4 were escalated, mainly to carbapenems, usually for clinical deterioration (n = 480; 65.9%). A total of 564/3,195 infants (17.7%) were blood culture pathogen positive, of whom 62.9% (n = 355) had a gram-negative organism, predominantly Klebsiella pneumoniae (n = 132) or Acinetobacter spp. (n = 72). Both were commonly resistant to WHO-recommended regimens and to carbapenems in 43 (32.6%) and 50 (71.4%) of cases, respectively. MRSA accounted for 33 (61.1%) of 54 Staphylococcus aureus isolates. Overall, 350/3,204 infants died (11.3%; 95% CI 10.2% to 12.5%), 17.7% if blood cultures were positive for pathogens (95% CI 14.7% to 21.1%, n = 99/564). A baseline NeoSep Severity Score had a C-index of 0.76 (0.69 to 0.82) in the validation sample, with mortality of 1.6% (3/189; 95% CI: 0.5% to 4.6%), 11.0% (27/245; 7.7% to 15.6%), and 27.3% (12/44; 16.3% to 41.8%) in low (score 0 to 4), medium (5 to 8), and high (9 to 16) risk groups, respectively, with similar performance across subgroups. A related NeoSep Recovery Score had an area under the receiver operating curve for predicting death the next day between 0.8 and 0.9 over the first week. There was significant variation in outcomes between sites and external validation would strengthen score applicability. Conclusion Antibiotic regimens used in neonatal sepsis commonly diverge from WHO guidelines, and trials of novel empiric regimens are urgently needed in the context of increasing antimicrobial resistance (AMR). The baseline NeoSep Severity Score identifies high mortality risk criteria for trial entry, while the NeoSep Recovery Score can help guide decisions on regimen change. NeoOBS data informed the NeoSep1 antibiotic trial (ISRCTN48721236), which aims to identify novel first- and second-line empiric antibiotic regimens for neonatal sepsis. Trial registration ClinicalTrials.gov, (NCT03721302).
Sclerema neonatorum was a relatively common, grave condition in this setting, heralded by poor feeding, jaundice, and bacteremia, and signaling the need for prompt antibiotic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.