Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room-temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin—a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum-relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.
We analyze Bouguer anomalies in/around the focal region of the 2016 Kumamoto earthquake to examine features, such as continuity, segmentation and faulting type, of the active fault zones related to the earthquake. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features. First horizontal and vertical derivatives, as well as a normalized total horizontal derivative, characterize well the continuous subsurface fault structure along the Futagawa fault zone. On the other hand, the Hinagu fault zone is not clearly detected by these derivatives, especially in the case of the Takano-Shirahata segment, suggesting a difference of cumulative vertical displacement between the two fault zones. The normalized total horizontal derivative and the dimensionality index indicate a discontinuity of the subsurface structure of the Hinagu fault zone, that is, a segment boundary between the Takano-Shirahata and the Hinagu segments. The aftershock distribution does not extend beyond this segment boundary. In other words, this segment boundary controls the southern end of the rupture area of the foreshock. We also recognize normal fault structures dipping to the northwest in some areas of the fault zones from estimations of dip angles.
We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone-the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bouguer anomaly and its first horizontal and vertical derivatives clearly illustrate the EBFZNP. The steep first horizontal derivative and the zero isoline of the vertical derivative are clearly recognized along the entire EBFZNP over an area that shows no surface topographic features of an active fault. Two-dimensional density structure analyses also confirm a relationship between the two first derivatives and the subsurface fault structure. Therefore, we conclude that the length of the EBFZNP as an active fault extends to ~56 km, which is longer than previously estimated. This length leads to an estimation of a moment magnitude of 7.4 of an expected earthquake from the EBFZNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.