Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and epidemiological information to provide much needed evidence for improvement in the characterisation and classification of TBI and in the identity of the most effective clinical care for this patient cohort. However, analysis of collaborative imaging data is challenging: the diverse spectrum of image acquisition and postprocessing limits reproducibility, and there is a requirement for a robust quality assurance initiative. Future clinical use of advanced neuroimaging should ensure standardised approaches to image acquisition and analysis, which can be used at the individual level, with the expectation that future neuroimaging advances, personalised to the patient, may improve prognostic accuracy and facilitate the development of new therapies.
Purpose Dural arteriovenous fistulas (dAVF) account for approximately 10–15% of all intracranial arteriovenous abnormalities. dAVFs carry a significant risk of mortality, particularly in cases of acute hemorrhage, of up to 10%. A small proportion of these dAVFs are found in the anterior cranial fossa (ACF), of which the rate of hemorrhage can be as high as up to 91%. The Scepter Mini (SM) is the smallest dual-lumen micro-balloon (MB) available for neurointerventional practice. It consists of a 2.8 French outer diameter, with a 2.2 mm × 9 mm semi-compliant balloon providing a working length of 165 cm. The SM is navigated with a 0.008-inch wire making it a particularly attractive tool accessible to the pedicles normally reached with liquid embolization micro-catheters. Methods Five consecutive patients over a 1-year period between 2020 and 2021 were evaluated and treated for ACF dAVF using a liquid embolization approach using the SM balloon. All patients were treated using ethylene–vinyl alcohol copolymer (EVOH), of which Squid 18 and/or Squid 12 were the chosen viscosities. Control angiograms were performed for all patients post-embolization. Results All patients demonstrated complete occlusion of the ACF dAVF on immediate post-treatment angiography. No immediate complications were encountered; particularly, there were no reports of visual field deficit in any of the patients. Conclusion The MB is a valuable adjunctive tool that can enhance the safety and efficacy of trans-ophthalmic embolization of ACF dAVFs, providing additional protection to the retinal and posterior ciliary arteries against unwanted reflux of liquid embolic agent.
Radiological investigations are a powerful tool in the assessment of patients with intracranial vascular anomalies. ‘Visual’ assessment of neurovascular lesions is central to their diagnosis, monitoring, prognostication and management. Computed tomography and magnetic resonance imaging are the two principal non-invasive imaging modalities used in clinical practice for the assessment of the cerebral vasculature, but these techniques continue to evolve, enabling clinicians to gain greater insights into neurovascular pathology and pathophysiology. This review outlines both established and novel imaging modalities used in modern neurovascular practice and their clinical applications.
We conclude that scheduling for F-FDG PET-CT can be performed efficiently using simple preparation instructions, even in the context of high prevalence of DM and with a high rate of incidental diagnosis of DM at the time of scanning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.