IntroductionMastic trees are commonly known as evergreen pistachio or lentisk. In Turkey lentisk shares its habitat with Pistacia terebinthus L., olives, carob, and others, but it prefers welldrained to dry sandy or stony alkaline soil conditions (Ak and Parlakcı, 2009). Mastic trees show a peculiar adaptability to several climatic conditions (Zohary, 1952) and have positive biological characteristics, such as drought tolerance (Correia and Catarino, 1994) and protection of soil against erosion (Mulas and Deidda, 1998). However, the area that is suitable for mastic tree cultivation is limited in the world. Today a major limitation facing the widespread expansion of commercial mastic tree plantations is the shortage of superior plants, primarily because of the difficulties experienced in propagating this species using the traditional method of rooting the cuttings. Currently mastic trees are proliferated by seed, with the rational development of hereditary instability and great discrepancy in the formation degree among genotypes because of obstacles such as parthenocarpy and ovary aborticide (Grundwag, 1976). Vegetative propagation by cutting is also difficult due to impoverished or adventitious roots. Conventional propagation methods to improve Pistacia species such as P. lentiscus L. are limited because species belonging to the genus Pistacia have a long stage of juvenility. In addition, plants originating from seeds often do not maintain the genetic purity of the parent plants due to segregation and recombination of genetic characteristics during sexual reproduction. Thus, to improve trade, a vegetative propagation technique must be developed for large-scale propagation. Possible ways to move forward are necessary in order to avoid problems in vegetative propagation and to produce clonal stocks. Micropropagation of lentisk genotypes has been achievedAbstract: An in vitro propagation method was established for both male and female genotypes of lentisk using actively growing shoot tips derived from forcefully lignified shoots. The effects of growth regulators on in vitro morphogenesis were investigated. Since rooting of the regenerated shoots for both genotypes was not achieved, an in vitro micrografting method was developed for the production of plantlets. Moreover, genetic stability of 3-, 6-, and 24-times subcultured clones of both genotypes was assessed and compared with the mother plants using fluorescent-based amplified fragment length polymorphism (AFLP) analysis. The set of main plants and the different subcultured clones were divided into two clusters. In the first cluster, the original male and female plants were grouped together with the 3-times subcultured female and the 6-times subcultured male and female groups, whereas the second cluster contained the 24-times subcultured clones and the 3-times subcultured male group. To the best of our knowledge, this is the first report of successfully inducing plantlets from mature lentisk genotypes and the first analysis of clonal fidelity of regenerated mature...
Different nutrient media (MS [Murashige and Skoog 1962]; QL [Quoirin and Lepoivre 1977] and WPM [Lloyd and McCown 1980]); plant growth regulators BA (benzil adenin), GA 3 (gibberellic acid), IBA (indole-3-butyric-acid), NAA (naftalen acedic acid); and sucrose concentrations were studied to determine the in vitro culture effects on healthier and faster seedling development from mature lentisk (Pistacia lentiscus L.) seeds. After 28 days of culture, the percentage of germinated seeds was the highest (70%) in the full-strength MS medium. The cytokinin BA was superior to other tested treatments in terms of its ability to promote germination of lentisk seeds. When tested at different concentrations, sucrose gave the best results obtained at concentrations of 1-4%, whereas high concentrations (6 and 8%) mainly decreased germination rate and there was no a regular pattern for elongation of the aerial parts of plants. With this described protocol, on average 76.67% seeds germinated 4 weeks after culture. Developed seedlings were satisfactorily acclimatized in sterilized peat, soil and perlite containing compost, with high percentage survival viability was obtained 9 months after transfer to in vivo conditions (93.33%). The results obtained showed that the enriched full-strength MS medium supplemented with 1 mg L-1 BA and 3% sucrose induced homogeneous and healthy seedling development in a period of 4 to 8 weeks of culture.
ÖZET: İn-vitro aşılama, aksenik kültür koşullarında minyatür aşı kalemlerinin aşılanmasını kapsayan ve diğer tekniklere nazaran en son vejetatif çoğaltım tekniklerinden biridir. Bu yöntem, sürgün ucu kültürü ve aşılamanın bazı sınırlayıcı özelliklerinin üstesinden gelmekle birlikte, her iki metodun avantajlarını da bir arada bulundurmaktadır. İlk uygulandığı zamanlarda bazı meyve tür ve çeşitlerindeki virüs ve benzeri endojen patojenlerin eradikasyonu için geliştirilen in-vitro aşılama, bitki gelişim ve fizyolojisinin farklı alanlarında çeşitli odunsu bitki türlerinde hızla gelişmiştir. Bunlar birçok odunsu türlerin olgun genotiplerinin klonal çoğaltımında bir ön koşul olarak fizyolojik rejuvenasyonu ve aşıda uyuşmazlığı da kapsamaktadır. Sonuç olarak in-vitro aşılama, yoğun olarak kullanılan ve diğer vejatatif çoğaltım metodlarında bulunan olumsuzlukların üstesinden gelebilmek için daha çok düşünülmeyi ve kullanılmayı hak eden orijinal ve tecrübe gerektiren bir tekniktir. Doku ve hücreler arasındaki genetik benzerlik ve farklılıkların ayrıntılı incelenmesine imkan sağlamaktadır. Bu çalışmanın amacı, 1970'li yıllarda turunçgillerde virüsten ari bitki üretimi amacıyla başlayan in vitro aşılama çalışmalarının günümüze kadar nasıl bir süreçten geçtiği ve özellikle meyve türlerinin de dahil olduğu odunsu bitki türlerinde bitki ıslahı ve çoğaltımı amacıyla ne tür çalışmaların yapıldığının ortaya çıkarılması ve belli bir düzende sunulmasıdır.Anahtar Kelimeler: Aşılama, in-vitro, kalem ABSTRACT: In vitro micrografting is a propagation technique, involving the grafting of relatively miniature cuttings under axenic culture conditions and it is one of the recent developed propagation techniques compared to other conventional vegetative propagation techniques. This method overcomes some of the limitations of shoot tip culture and grafting, while it also keeps together the advantages of both methods. Micrografting was applied for the eradication viruses and pathogens from some fruit species and cultivars during the first application period, but later, the technique was further developed on various woody plant species in different research areas of plant physiology and development. These includes physiological rejuvenation and incompatibility grafting as a prerequisite for the clonally propagation of mature genotypes of many woody species. Consequently, in vitro micrografting is used in large scale propagation and an original technique which needs experience by overcoming the disadvantages of other propagation technique. It also enables to examine in detail the genetic similarities and differences between the tissues and cells. The aims of this study were (1) to review how micrografting studies passed a process from 1970s until today, first started to obtain virus-free plants from citrus; (2) to reveal what kind of work has been presented particularly on the plant breeding and propagation of the woody plant species, including the type of fruit breeding and reproduction and (3) and to present those studies in a specific order.
İn-vitro aşılama, aksenik kültür koşullarında minyatür aşı kalemlerinin aşılanmasını kapsayan ve diğer tekniklere nazaran uygulanan en son vejetatif çoğaltım tekniklerinden biridir. Bu yöntem, sürgün ucu kültürü ve aşılamanın bazı sınırlayıcı özelliklerinin üstesinden gelmekle birlikte, her iki metodun avantajlarını da bir arada bulundurmaktadır. İlk uygulandığı zamanlarda bazı meyve tür ve çeşitlerindeki virüs ve benzeri endojen patojenlerin eradikasyonu için geliştirilen in-vitro aşılama, bitki gelişim ve fizyolojisinin farklı alanlarında çeşitli odunsu bitki türlerinde hızla gelişmiştir. Bunlar birçok odunsu türlerin olgun genotiplerinin klonal çoğaltımında bir ön koşul olarak fizyolojik rejuvenasyonu ve aşıda uyuşmazlığı da kapsamaktadır. Sonuç olarak in-vitro aşılama, yoğun olarak kullanılan, diğer vejatatif çoğaltım metodlarında bulunan olumsuzlukların üstesinden gelebilmek için daha çok düşünülmeyi ve kullanılmayı hak eden bir tekniktir. Doku ve hücreler arasındaki genetik benzerlik ve farklılıkların ayrıntılı incelenmesine imkân sağlamaktadır. Bu çalışmanın amacı, 1970'li yıllarda turunçgillerde virüsten ari bitki üretimi amacıyla başlayan in vitro aşılama çalışmalarının günümüze kadar nasıl bir süreçten geçtiğinin ve özellikle meyve türlerinin de dâhil olduğu odunsu bitki türlerinde bitki ıslahı ve çoğaltımı amacıyla ne tür çalışmaların yapıldığının ortaya konulması ve belli bir düzende sunulmasıdır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.