This study evaluated the effects of comorbid disorders of diabetes and hyperthyroidism in the adult male mice. In total, 32 ICR strain mice were equally distributed into four groups: control (C), diabetic (D), diabetic-plushyperthyroid (DH), and hyperthyroid (H). Mice allocated for diabetes received a single intraperitoneal injection of streptozotocin (STZ) at 200 mg/kg body weight. At the onset of diabetes, one group of mice was concomitantly injected levothyroxine (LT4; 0.3 mg/kg body weight) and the other set of animals received the same treatment independently on a daily basis. The body weight, as well as the testicular and epididymal weights, was reduced markedly in D and DH mice. Higher trends of blood glucose levels were seen in the DH group, in comparison to euthyroid diabetic mice. Thyroid hormones could exert a transient effect on blood glucose homeostasis by altering the serum blood glucose level in diabetic patients. Histomorphometric analysis showed increased luminal sizes of seminiferous tubules, along with decreased epithelial height and atrophic changes in germinal stem cells in the testis of DH and H mice. Caput epididymis of DH mice showed extensive compaction of principal cells, loss of stereocilia, lipid vacuolization, and inflammatory infiltrations; however, damaged tubular integrity, packed clear cells, exfoliated cells, and round spermatids were profoundly noticed in the cauda epididymis. Hyperthyroidism elevated the serum testosterone levels in H and DH mice and produced critical damages to the histoarchitecture of the epididymis. Collectively, this experiment endeavored to mimic the polyglandular autoimmune syndrome, which will be helpful to better understand the reasons for male infertility in diabetic-cum-hyperthyroid patients.
The current study investigated the effects of phytochemicals genistein and/or hesperidin dietary supplementation on immunity and haematology of growing broilers. A total of 360 1-day-old broiler chicks (Arbor Acres, mixed sex) were randomly assigned to six treatment groups, namely T0, control; T1 and T2, supplemented with 5 and 20 mg of genistein and hesperidin; while T3, T4, and T5 diets contained 5, 10, and 20 mg of genistein þ hesperidin (1:4) mixture, respectively, per kg of diet. The white blood cell count was significantly (p < .01) increased in T1, T2, T4, and T5 compared with the control (T0) group. The haemoglobin concentration significantly (p < .01) increased in the T5 group, while mean corpuscular haemoglobin concentration was significantly (p < .05) higher in T4 compared with the T0 group. Antibody titres against Newcastle disease significantly (p < .01) increased in T1, T2, T3, T4, and T5 compared with the T0 group. Similarly, all phytochemicals treated groups exhibited an increase (p < .01) in antibody titres against Avian Influenza virus, as compared with the controls. At the same time, the supplemented groups had significantly (p < .01) higher neutrophil adhesion rate and cutaneous basophil hypersensitivity test representing the cellular immune response than the controls. In conclusion, supplementation with both phytochemicals, genistein and hesperidin, positively influenced the immune parameters and haematological profile of growing broilers, thus might be considered as feed additives in broiler industry. ARTICLE HISTORY
| Present study was carried out to evaluate the common adultrants practiced in market milk at the vicinity of Hyderabad city. In first experiment, a total of 100 unprocesed milk samples (five from each retailer sale points) were collected and examined during the summer season. Market milk was mainly adulterated with water, formalin, cane sugar (CS), skimmed milk powder (SMP), starch and sodium chloride. The water was common adulterants found to be in all the milk samples (100%), followed by formalin (34%), CS (24%), starch (13%), SMP (08%) and sodium chloride (05%). In second experiment, the recovered adultrants (viz., water, starch, SMP, CS, formalin) was used as treatment to record their effects on the physico-chmical charcateristics of normal milk. Significant influence of extraneous water (10 and 20% ) among the treatment was observed on physico-chemical characteristics of milk. Decrease in specific gravity (1.027±0.0003 and 1.024±0.001 respectively) and increase in freezing point(-0.462±0.01 and -0.399±0.01 0 C, respectively) was recorded against their corresponding controls (1.030±0.001 and -0.525±0.01 0 C, respectively) by the addition of extrenous water in milk. Addition of 10% water did not show any significant influence (p> 0.05) on pH value of milk (6.68±0.03), while 20% water had remarkable effect (p<0.05) on it (6.72±0.02) compared to that of whole milk (6.64±0.02). comparable reduction (p<0.05) in TS (total solid) content (13.34±0.28 and 11.15±0.44%) as compared to control milk (15.54±0.35) was observed. Protein, fat and lactose contents were also influenced (p<0.05) by addition of extraneous water to control milk. Addition of 1 and 2% each of starch, SMP and CS to normal milk did not show (p> 0.05) any significant influence on pH values and fat contents of milk, except addition of 2% CS that affected the pH (p<0.05). These results indicate alarming state of milk adulteration in Hyderabad city. As these adultrants significantlty affected the physico-chemical characteristics of milk like specific gravity, total solids content, protein and lactose content of milk.
BackgroundDiabetes and hypothyroidism produce adverse effects on body weight and sexual maturity by inhibiting body growth and metabolism. The occurrence of diabetes is always accompanied with thyroid dysfunction. Thus, it is important to take hypo- or hyper-thyroidism into consideration when exploring the adverse effects caused by diabetes. Previous reports have found hypothyroidism inhibits testicular growth by delaying Sertoli cell differentiation and proliferation. Hence, by establishing a mouse model of diabetes combined with hypothyroidism, we provided evidence that poly glandular autoimmune syndrome affected testicular development and spermatogenesis.Resultswe mimicked polyglandular deficiency syndrome in both immature and prepubertal mice by induction of diabetes and hypothyroidism, which caused decreases in serum concentrations of testosterone and insulin like growth factor 1 (IGF-1). Such reduction of growth factor resulted in inhibition of testicular and epididymal development. Moreover, expressions of Claudin-11 were observed between Sertoli cells and disrupted in the testes of syndrome group mice. We also found reduced sperm count and motility in prepubertal mice.ConclusionsThis mimicry of the diabetes and thyroid dysfunction, will be helpful to better understand the reasons for male infertility in diabetic-cum-hypothyroid patients.Electronic supplementary materialThe online version of this article (10.1186/s12861-018-0174-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.