This study explains the impression of MHD Maxwell fluid with the presence of thermal radiation on a heated surface. The heat and mass transmission analysis is carried out with the available of Cattaneo–Christov dual diffusion. The derived PDE equations are renovated into ODE equations with the use of similarity variables. HAM technique is implemented for finding the solution. The importance of physical parameters of fluid velocity, temperature, concentration, skin friction, and heat and mass transfer rates are illustrated in graphs. We found that the fluid velocity declines with the presence of the magnetic field parameter. On the contrary, the liquid temperature enhances by increasing the radiation parameter. In addition, the fluid velocity is low, and temperature and concentration are high in Maxwell fluid compared to the viscous liquid.
The object of this work is to an innovation of a class
k
−
U
~
S
T
s
ℏ
,
υ
,
τ
,
ι
,
ς
in
Y
with negative coefficients, further determining coefficient estimates, neighborhoods, partial sums, convexity, and compactness of this specified class.
<abstract>
<p>The authors introduce a finite variable quadratic functional equation and derive its solution. Also, authors examine its Hyers-Ulam stability in Random Normed space(RN-space) by means of two different methods.</p>
</abstract>
In this paper, we explored the impact of thermally radiative MHD flow of Williamson nanofluid over a stretchy plate. The flow in a stretchy plate is saturated via Darcy–Forchheimer relation. Cattaneo–Christov heat-mass flux theory is adopted to frame the energy and nanoparticle concentration equations. Additionally, the mass transfer analysis is made by activation energy and binary chemical reaction. Activation energy is invoked through the modified Arrhenius function. The intention of the current investigation is to enhance the heat transfer rate in industrial processes. The non-Newtonian nanofluids have more prominent thermal characteristics compared to ordinary working fluids. The governing models are altered into ODE models, and these models are numerically solved by applying the MATLAB bvp4c algorithm. The graphical and tabular interpretations have scrutinized the impact of sundry distinct parameters. The fluid speed escalates for enhancing the Richardson number, and it falls off for higher values of the Weissenberg number. It is noticed that the fluid temperature declines for higher values of the Brownian motion parameter and it grows for larger values of the thermophoresis parameter. The activation energy enriches the heat transfer gradient and suppresses the local Sherwood number. Additionally, the more significant heat transfer gradient occurs in heat-absorbing nonradiative viscous nanofluid and a smaller heat transfer gradient occurs in heat-generating radiative Williamson nanofluid. Also, we noticed that a higher heat transfer gradient appears in the Fourier model than in the Catteneo–Christov model. In addition, the comparative results are confirmed and reached an outstanding accord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.