This study explains the impression of MHD Maxwell fluid with the presence of thermal radiation on a heated surface. The heat and mass transmission analysis is carried out with the available of Cattaneo–Christov dual diffusion. The derived PDE equations are renovated into ODE equations with the use of similarity variables. HAM technique is implemented for finding the solution. The importance of physical parameters of fluid velocity, temperature, concentration, skin friction, and heat and mass transfer rates are illustrated in graphs. We found that the fluid velocity declines with the presence of the magnetic field parameter. On the contrary, the liquid temperature enhances by increasing the radiation parameter. In addition, the fluid velocity is low, and temperature and concentration are high in Maxwell fluid compared to the viscous liquid.
In this paper, we explored the impact of thermally radiative MHD flow of Williamson nanofluid over a stretchy plate. The flow in a stretchy plate is saturated via Darcy–Forchheimer relation. Cattaneo–Christov heat-mass flux theory is adopted to frame the energy and nanoparticle concentration equations. Additionally, the mass transfer analysis is made by activation energy and binary chemical reaction. Activation energy is invoked through the modified Arrhenius function. The intention of the current investigation is to enhance the heat transfer rate in industrial processes. The non-Newtonian nanofluids have more prominent thermal characteristics compared to ordinary working fluids. The governing models are altered into ODE models, and these models are numerically solved by applying the MATLAB bvp4c algorithm. The graphical and tabular interpretations have scrutinized the impact of sundry distinct parameters. The fluid speed escalates for enhancing the Richardson number, and it falls off for higher values of the Weissenberg number. It is noticed that the fluid temperature declines for higher values of the Brownian motion parameter and it grows for larger values of the thermophoresis parameter. The activation energy enriches the heat transfer gradient and suppresses the local Sherwood number. Additionally, the more significant heat transfer gradient occurs in heat-absorbing nonradiative viscous nanofluid and a smaller heat transfer gradient occurs in heat-generating radiative Williamson nanofluid. Also, we noticed that a higher heat transfer gradient appears in the Fourier model than in the Catteneo–Christov model. In addition, the comparative results are confirmed and reached an outstanding accord.
This paper scrutinizes the consequences of radiation and heat consumption of MHD convective flow of nanofluid on a heated stretchy plate with injection/suction and convective heating/cooling conditions. The nanofluid encompasses with C u and A g nanoparticles. We enforce the suited transformation to remodel the governing mathematical models to ODE models. The HAM (homotopy analysis method) idea is applied to derive the series solutions. The divergence of fluid velocity, temperature, skin friction coefficient, local Nusselt number, entropy generation, and Bejan number on disparate governing parameters is exhibited via graphs and tables. It is seen that the fluid velocity in both directions is subsided when elevating the magnetic field and Forchheimer number. Also, the C u nanoparticles possess hefty speed compared to A g nanoparticles because the density of A g nanoparticles is high compared to that of C u nanoparticles. The fluid temperature upturns when enlarging the heat generation and radiation parameters. The skin friction coefficients and local Nusselt number are high in A g nanoparticles than in C u nanoparticles.
The recent progress in nanotechnology provides the concept of hybrid-class nano-fluids having advanced thermal features comparing to regular nanofluids. The idea of a hybrid nanofluid has motivated many researchers because of its convincible performance in thermal systems. The novel theme of the present effort is to scrutinize the consequences of convective heat transfer in bidirectional water driven hybridclass nanofluid involving blade shaped cadmium telluride CdTe and graphite C nanoparticles with electromagnetohydrodynamics (EMHD) process. The transport equations representing the aforementioned topic are firstly nondimensionalized by using scaling-group transformation and then tackled by the Keller-box method, numerically. The significant results for pertinent parameters have been simulated and presented graphically as well as in tabular forms. Coefficients of drag forces are diminished with the more loadings of cadmium telluride and graphite nanoparticles and opposite results are noticed in the case of the Nusselt number. Heat transport has been improved significantly with more loadings of nanoparticles from 1 wt% to 10 wt%. A comparison benchmark for a limited version of the investigation is made with the previously published data.
Little is known in the literature about the concept of nonuniform heat source/sink and higher-order chemical reaction for the dynamics of Oldroyd-B nanoparticles. Therefore, the present article addresses the nonuniform heat source/sink and higher-order chemical reaction features in nonlinear mixed convection bidirectional MHD dynamics of Oldroyd-B nanoparticles with thermal radiation aspects through porous space. Stratification effects for both the temperature and concentration setups are also used in the mathematical model with the significance of random movement and thermodiffusion of nanoparticles. Shape-preserving transformations have been employed to convert the transport equations into solvable forms. An innovative analytical tactic, namely, homotopy analysis method, has been adopted to find the solution of the modeled problem. Behaviors of pertinent parameters on thermal and concentration profiles have been discussed through various graphs. Inspection of heat/mass transport against appropriate varieties of pertinent parameters has been made and explained physically. Thermal profile is augmented with the higher estimations of space and temperature-dependent heat source/sink links. Concentration profile is diminished with the augmentation of higher-order chemical reaction parameter. Sherwood number is improved with the estimation of 0 ≤ β t ≤ 100 and is reduced with the growth of 0 ≤ β c ≤ 100 . Nusselt number is declined with the upgraded amounts of 0 ≤ N b ≤ 3 and 0 ≤ N t ≤ 5 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.