Surface plasmon resonance (SPR) is a powerful technique for measurement of biomolecular interactions in real-time in a label-free environment. One of the most common techniques for plasmon excitation is the Kretschmann configuration, and numerous studies of ligand-analyte interactions have been performed on surfaces functionalized with a variety of biomolecules, for example DNA, RNA, glycans, proteins, and peptides. A significant limitation of SPR is that the substrate must be a thin metal film. Post-coating of the metal thin film with a thin dielectric top layer has been reported to enhance the performance of the SPR sensor, but is highly dependent on the thickness of the upper layer and its dielectric constant. Graphene is a single-atom thin planar sheet of sp2 carbon atoms perfectly arranged in a honeycomb lattice. Graphene and graphene oxide are good supports for biomolecules because of their large surface area and rich π conjugation structure, making them suitable dielectric top layers for SPR sensing. In this paper, we review some of the key issues in the development of graphene-based SPR chips. The actual challenges of using these interfaces for studying biomolecular interactions will be discussed and the first examples of the use of graphene-on-metal SPR interfaces for biological sensing will be presented.
The kinetics of formation of solid-supported lipid model membranes were investigated using a home-made plasmon waveguide resonance (PWR) sensor possessing enhanced properties relative to classic surface plasmon resonance sensors. Additionally, the kinetics of interaction of two amyloid peptides with zwitterionic and anionic membranes and their effect on lipid organization were followed.
Understanding interactions of glycans with proteins in key biological events has seen the development of various analytical methods such as microarray techniques. Label-free approaches, such as surface plasmon resonance (SPR) techniques are particularly attractive and we explore here the potential of a novel interface composed of lamellar Ti/Au/silicon dioxide derivatized with sugars to probe lectin-sugar interactions by SPR. Two parallel surface functionalization strategies have been developed: one in which azide-functionalized surfaces are linked via a Cu(I) "click" method to alkynyl-derivatized glycan partners and another wherein perfluorophenyl azide-functionalized surfaces are reacted through a C-H insertion photocoupling reaction with underivatized glycans. The effectiveness of the two interfaces is assessed for their lectin-recognition abilities in an SPR format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.