Background:Renal ischemia/reperfusion injury (RIRI) is the most common cause of acute kidney injury. We tested the protective role of endothelin-1 receptor blocker; bosentan (BOS) in animal model of RIRI in two different genders.Methods:Male and female Wistar rats were assigned as sham operated (sham), control group (ischemia), and case group (ischemia + BOS) treated with BOS (50 mg/kg) 2 h before bilateral kidney ischemia induced by clamping renal vessels for 45 min followed by 24 h of renal reperfusion.Results:The RIRI significantly increased the serum levels of blood urea nitrogen and creatinine in both genders (P < 0.05). These values were significantly decreased by BOS in both genders. In male rats, the serum levels of malondialdehyde in the ischemia + BOS group were decreased significantly when compared with ischemia group (P < 0.05).Conclusions:BOS can be used in both genders to attenuate kidney ischemia injury possibly due to its effect in the renal vascular system.
The health benefits of omega-3 fatty acid (FA) supplementation on inflammatory gene expression (IGE) and multiple sclerosis (MS) are becoming more evident. However, an overview of the results from randomized controlled trials is lacking. This study aimed to conduct a meta-analysis to evaluate the effect of omega-3 fatty acid intake on MS (based on the criteria of the Expanded Disability Status Scale (EDSS)) and inflammatory gene expression (IGE). A search was conducted of PubMed, EMBASE, and Web of Science for cohort studies published from the inception of the database up to May 2022 that assessed the associations of omega-3 polyunsaturated fatty acids (n-3 PUFAs), docosahexaenoic acid (DHA), α-linolenic acid (ALA), and eicosapentaenoic acid (EPA) with EDSS and inflammatory gene expression (peroxisome proliferator-activated receptor gamma (PPAR-γ), tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-8 (IL-8)) outcomes. For the highest vs. lowest comparison, the relative risk (RR) estimates with a 95% confidence interval (CI) were pooled using the random-effect model. In total, 13 cohort studies with 1353 participants were included in the meta-analysis during periods of 3 to 144 weeks. A significant inverse relationship was found between DHA and EDSS scores (RR: 1.05; 95% CI: 0.62, 1.48; p < 0.00001). Our results also showed that omega-3 FAs significantly upregulated the gene expression of PPAR-γ (RR: 0.95; 95% CI: 0.52, 1.38; p < 0.03) and downregulated the expression of TNF-α (RR: −0.15; 95% CI: −0.99, 0.70; p < 0.00001) and IL-1 (RR: −0.60; 95% CI: −1.02, −0.18; p < 0.003). There was no clear evidence of publication bias with Egger’s tests for inflammatory gene expression (p = 0.266). Moreover, n-3 PUFAs and EPA were not significantly associated with EDSS scores (p > 0.05). In this meta-analysis of cohort studies, blood omega-3 FA concentrations were inversely related to inflammatory gene expression (IGE) and EDSS score, which indicates that they may hold great potential markers for the diagnosis, prognosis, and management of MS. However, further clinical trials are required to confirm the potential effects of the omega-3 FAs on MS disease management.
Genetically modified immune cells, especially CAR‐T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR‐T cell therapy. Determining the therapeutic targets, side effects, and use of CAR‐T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR‐T cells have become crucial in treating some neurological disorders. CAR‐T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood–brain barrier and use diverse targets. However, CAR‐T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR‐T cells in neurological diseases and/or disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.