BackgroundUropathogenic Escherichia coli O- Serogroups with their virulence factors are the most prevalent causes of UTIs. The present research performed to track common uropathogenic E.coli serogroups, antibiotic resistance pattern of strains and prevalence of virulence genes in isolations having the ability to constitute biofilm.MethodsIn this research 130 E.coli isolation from patients having UTI symptoms were collected and antimicrobial resistance pattern was performed by Kirby-Bauer method. Polymerase chain reaction was done using primer pairs to identify common serogroups of uropathogenic E.coli and studying virulence genes in isolations creating biofilm.ResultsAmong 130 E.coli isolates, 80 (61.53 %) were able to make biofilm that 15 isolates (18.75 %) indicated strong reaction, 20 (25 %) of medium and 45 (56.25 %) of weak biofilm reaction. Among isolations creating biofilm, the highest resistance reported to Ampicillin (87.5 %) and the lowest to Nitrofurantoin (3.75 %). The frequency of fimH, pap, sfa and afa genes in isolations having the ability to create strong biofilm reported 93.33 %, 86.66 %, 86.66 % and 66.66 %, respectively.ConclusionsThe findings indicated the importance of virulence genes in serogroups producing uropathogenic E.coli biofilm. It is recommended that strains producing biofilm before antibiotic use should be studied.
Burns are the most prevalent type of trauma in the world, and they have a high fatality rate. For cutaneous wound healing, modern and natural therapies, particularly probiotic supplements, have lately been considered. The goal of this study was to see how Lactiplantibacillus plantarum affected wound healing as well as the antibacterial activity of probiotic lactobacilli against Pseudomonas aeruginosa. The glass slide method was used to assess anti-adhesion activity, and the HPLC method was used to quantify anti-adhesion chemicals in cell-free supernatant (CFS). MDR P. aeruginosa was administered subcutaneously directly on the burn after induction of second-degree wounds. Three groups of animals were created. Every day, the supernatants were sprayed for therapy, and the wound healing was monitored. Lactobacilli bacteria had good anti-adhesion effects on P. aeruginosa, according to our findings, and HPLC research revealed that their inhibitory effect could be attributable to four main organic acids: lactic acid, acetic acid, citric acid, and succinic acid. When the effect of treatments on fibroblastic cells was examined, it was discovered that the group treated with L. plantarum supernatants had the most fibroblastic cells when compared to the non-treated group. Furthermore, the bacteria increased the number of fibroblastic cells, re-epithelialization in the wound area, and the thickness of the epidermis and dermis layers. Lactobacilli bacteria's antimicrobial activity against MDR P. aeruginosa was determined by prevents infection. These findings revealed that L. plantarum can treat a P. aeruginosa infection in a second-degree burn and can significantly reduce inflammation.
Background: Vibrio cholerae is a significant human pathogen worldwide and annually causes some cases of deaths. Contaminated water plays an important role in transmission of this pathogen, which indicates the importance of early diagnosis. Objectives: The current study aimed to perform Polymerase Chain Reaction (PCR) on water and wastewater samples to determine the detection limit for Vibrio cholerae. Materials and Methods: PCR was performed on the DNA extracted from Vibrio cholerae of the contaminated water and wastewater using ctxA gene specific primers. The accuracy of PCR method to detect these bacteria was also assessed. Results: The result of PCR performed on the extracted DNA showed a specific 241 base pair band. The limit of bacterial detection for water and wastewater were 40 cfu/mL and 81 cfu/mL, respectively. Conclusions: In the current study, PCR performance using the ctxA gene specific primers to detect Vibrio cholerae was found highly accurate and specific.
Statement of Novelty. Esophageal cancer is one of the most common types of cancer globally. Nowadays, Lactobacilli with probiotic potency is a preventing factor in cancer and many diseases. The anti-tumor properties of these bacteria have been indicated in various studies. Objective. This study is aimed at investigating the effect of probiotic Lactobacillus rhamnosus on esophageal cancer in vivo and in vitro. Methods and Results. In this study, the cytotoxicity effects of L. rhamnosus supernatant and whole-cell culture on a cancer cell line (Kyse30) compared to 5fu were evaluated by the MTT assay. The real-time PCR method was used to analyse the L. rhamnosus supernatant effect on the expression of Wnt signaling pathway genes. An in vivo investigation in nude mice was done to assess the anti-tumor activity of L. rhamnosus supernatant and whole-cell culture. Both supernatant and whole-cell culture of L. rhamnosus reduced cell survival (Kyse30) P < 0.001 . The supernatant of this bacterium significantly reduced the expression of Wnt signaling pathway genes. Administration of supernatant and whole-cell culture of L. rhamnosus expressively reduced tumor growth compared to the control group. The effects of this bacterium on tumor necrosis were quite evident, pathologically P < 0.01 . Conclusion. This study is the first report that assessed the potential impact of L. rhamnosus, especially its supernatant on esophageal cancer and Wnt signaling pathway genes. Therefore, this bacterium can be a harmless candidate for esophageal cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.