Osteosarcoma (OS) is the most common bone malignancy that occurs most often in young adults, and adolescents with a survival rate of 20% in its advanced stages. Nowadays, increasing the effectiveness of common treatments used in OS has become one of the main problems for clinicians due to cancer cells becoming resistant to chemotherapy. One of the most important mechanisms of resistance to chemotherapy is through increasing the ability of DNA repair because most chemotherapy drugs damage the DNA of cancer cells. DNA damage response (DDR) is a signal transduction pathway involved in preserving the genome stability upon exposure to endogenous and exogenous DNA‐damaging factors such as chemotherapy agents. There is evidence that the suppression of DDR may reduce chemoresistance and increase the effectiveness of chemotherapy in OS. In this review, we aim to summarize these studies to better understand the role of DDR in OS chemoresistance in pursuit of overcoming the obstacles to the success of chemotherapy.
LncRNAs and miRNAs are the two most important non‐coding RNAs, which have been identified to be associated with cancer progression or prevention. The dysregulation of lncRNAs conducts tumorigenesis and metastasis in different ways. One of the mechanisms is that lncRNAs interact with miRNAs to regulate distinct cellular and genomic processes and cancer progression. LncRNA SNHG7 as an oncogene sponges miRNAs and develops lncRNA‐miRNA‐mRNA axes, leading to the regulation of several signaling pathways such as Wnt/β‐Catenin, PI3K/AKT/mTOR, SIRT1, and Snail‐EMT. Therefore, in this article, after a brief overview of lncRNA SNHG7‐miRNA‐mRNA axes' contribution to cancer development, we will discuss the role of lncRNA SNHG7 in the genes expression and signaling pathways related to cancers development via acting as a ceRNA.
Background
Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In this study, Dihydroartemisinin (DHART)-loaded polycaprolactone collagen nanofibers (PCL/Col NFs) were constructed as effective biocompatible scaffolds through adjusting the proportions of hydrophobic/ hydrophilic polymers for enhanced osteoblastic differentiation of human adipose-derived stem cells (hADSCs).
Results
The designed NFs were characterized through FTIR, XRD, TGA, FE-SEM, and tensile testing. DHART-loaded PCL/Col electrospun NFs provide an ideal solution, with the potential of sustained drug release as well as inhibition of drug re-crystallization. Interestingly, inhibiting DHART re-crystallization can improve its bioavailability and provide a more effective therapeutic efficacy. Besides, the data set found through FE-SEM, MTT, PicoGreen, qPCR, and alkaline phosphatase (ALP) assays revealed the improved adhesion and proliferation rate of hADSCs cultured on PCL/Col/DHART (5%) NFs after 14 and 21 days of incubation.
Conclusions
These findings confirmed the potential of the designed NF scaffolds for sustained/controlled release of DHART therapeutic molecules toward bone tissue regeneration and engineering.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.