Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.
As online content continues to grow, so does the spread of hate speech. We identify and examine challenges faced by online automatic approaches for hate speech detection in text. Among these difficulties are subtleties in language, differing definitions on what constitutes hate speech, and limitations of data availability for training and testing of these systems. Furthermore, many recent approaches suffer from an interpretability problem—that is, it can be difficult to understand why the systems make the decisions that they do. We propose a multi-view SVM approach that achieves near state-of-the-art performance, while being simpler and producing more easily interpretable decisions than neural methods. We also discuss both technical and practical challenges that remain for this task.
Users suffering from mental health conditions often turn to online resources for support, including specialized online support communities or general communities such as Twitter and Reddit. In this work, we present a framework for supporting and studying users in both types of communities. We propose methods for identifying posts in support communities that may indicate a risk of self-harm, and demonstrate that our approach outperforms strong previously proposed methods for identifying such posts. Self-harm is closely related to depression, which makes identifying depressed users on general forums a crucial related task. We introduce a largescale general forum dataset consisting of users with self-reported depression diagnoses matched with control users. We show how our method can be applied to effectively identify depressed users from their use of language alone. We demonstrate that our method outperforms strong baselines on this general forum dataset.
We propose a summarization approach for scientific articles which takes advantage of citation-context and the document discourse model. While citations have been previously used in generating scientific summaries, they lack the related context from the referenced article and therefore do not accurately reflect the article's content. Our method overcomes the problem of inconsistency between the citation summary and the article's content by providing context for each citation. We also leverage the inherent scientific article's discourse for producing better summaries. We show that our proposed method effectively improves over existing summarization approaches (greater than 30% improvement over the best performing baseline) in terms of ROUGE scores on TAC2014 scientific summarization dataset. While the dataset we use for evaluation is in the biomedical domain, most of our approaches are general and therefore adaptable to other domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.