Temperature transfer by virtue of natural convection for visualizing heat transport characteristics through heatline method within a prismatic cavity filled with Cu-H2O nanofluid considering two different temperature boundary conditions is performed numerically. Two top inclined walls are warmed-up at low temperature whilst the bottom wall is heated two different heated conditions such as uniform temperature condition and linear temperature condition. Two vertical walls are insulated. Finite element technique of Galerkin weighted residual form is employed for solving nonlinear partial differential equations for numerical calculation. Heatlines, isotherm contours, streamline contours, and Nusselt number are employed for displaying numerical simulated results for the model parameters entitled nanoparticles volume fraction, Hartmann number and Rayleigh number. The outcomes indicate that heat transfer rate has a significant impact on thermal boundary condition and shape of the nanoparticles. The temperature transfer value enhances significantly for higher Rayleigh number as well as nanoparticles volume fraction. Hartmann number has a positive impact on fluid flow and temperature transport. The characteristics of heat transport using heatlines method are also performed for predicting the better energy transform compared to isotherm contours. In addition, different types of nanofluids are also employed to examine the best heat transport performance.
The effect of temperature dependent variable viscosity on magnetohydrodynamic (MHD) natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface has been investigated. The governing boundary layer equations are first transformed into a nondimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, the stream lines and the isotherms are shown graphically for a selection of parameters set consisting of viscosity parameter (ε), magnetic parameter (M), and Prandtl number (Pr). Numerical results of the local skin friction coefficient and the rate of heat transfer for different values are also presented in tabular form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.