An analysis is presented to investigate the influences of viscous and pressure stress work on MHD natural convection flow along a uniformly heated vertical wavy surface. The governing equations are first modified and then transformed into dimensionless non-similar equations by using set of suitable transformations. The transformed boundary layer equations are solved numerically using the implicit finite difference method, known as Keller-box scheme. Numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, streamlines and isotherms are shown graphically. Some results of skin friction, rate of heat transfer are presented in tabular form for selected values of physical parameters.