The aim of the study was to investigate surface and buildup region doses for 6 MV and 15 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film, and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV and 15 MV photon beams at 100 cm source-detector distance for 5 × 5, 10 × 10, and 20 × 20 cm 2 field sizes and 0 ∘ , 30 ∘ , 60 ∘ , and 80 ∘ beam angles. The surface doses using 6 MV photon beams for 10 × 10 cm 2 field size were found to be 20.3%, 18.8%, and 25.5% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface doses using 15 MV photon beams for 10 × 10 cm 2 field size were found to be 14.9%, 13.4%, and 16.4% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary; thus, the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry and must be taken into account.
In this study we develop an efficient computational procedure that generates medically acceptable treatment plans for volumetric modulated arc therapy with constant gantry speed. Our proposed method is a column generation heuristic based on a mixed integer linear programming model, where the objective function contains minimization of total monitor unit of the treatment plan and dose-volume requirements are included as conditional value-at-risk constraints. Our heuristic generates a full treatment arc for the restricted master problem and calibrates the right hand side parameters of the conditional value-at-risk constraints in the first phase. In the second phase, this initial solution is improved by performing column generation. This is a fully automated procedure and produces treatment plans in a single call without any human intervention. We evaluate its performance on real prostate cancer data by comparing the quality of the generated plans with those obtained by a widely used commercial treatment planning system. Our analysis shows that the results are promising, and the generated plans satisfy the prescription restrictions and require fewer monitor units on average compared to the ones obtained using Eclipse.
Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm 2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.