The semiconductor industry continues to produce ever smaller devices that are ever more complex in shape and contain ever more types of materials. The ultimate sizes and functionality of these new devices will be affected by fundamental and engineering limits such as heat dissipation, carrier mobility and fault tolerance thresholds. At present, it is unclear which are the best measurement methods needed to evaluate the nanometre-scale features of such devices and how the fundamental limits will affect the required metrology. Here, we review state-of-the-art dimensional metrology methods for integrated circuits, considering the advantages, limitations and potential improvements of the various approaches. We describe how integrated circuit device design and industry requirements will affect lithography options and consequently metrology requirements. We also discuss potentially powerful emerging technologies and highlight measurement problems that at present have no obvious solution.
In critical dimension atomic force microscopy (CD-AFM), a major source of uncertainty is due to the tip. Measurements made using a CD-AFM tip show an apparent broadening of the feature width. Usually, the linewidth can be approximately corrected if the tip width is known. In addition to tip width broadening, tip-shape-dependent effects—also known as higher order tip effects—are a contributor to the uncertainty of CD-AFM linewidth measurements. These are especially important for undercut features and samples with relatively large sidewall roughness. In this paper, we examine the different types of CD-AFM higher order tip effects within the context of a reference measurement system and present a procedure for estimating some of these contributions with an uncertainty of less than 1.5 nm.
The National Institute of Standards and Technology (NIST) and SEMATECH have been working together to improve the traceability of critical dimension atomic force microscope (CD-AFM) dimensional metrology in semiconductor manufacturing. A major component of this collaboration has been the implementation of a Reference Measurement System (RMS) at SEMATECH using a current generation CD-AFM. An earlier tool, originally used at SEMATECH, has now been installed at NIST. Uncertainty budgets were developed for pitch, height, and CD measurements using both tools. At present, the standard uncertainties are approximately 0.2 % for pitch measurements and 0.4 % for step height measurements. Prior to the current work, CD-AFM linewidth measurements were limited to a standard uncertainty of about 5 nm. However, this limit can now be significantly reduced. This reduction results from the completion of the NIST/SEMATECH collaboration on the development of single crystal critical dimension reference materials (SCDDRM). A new generation of these reference materials was released to SEMATECH Member Companies during late 2004. The SEMATECH RMS was used to measure the linewidths of selected features on the distributed specimens. To reduce the uncertainty in tip width calibration, a separate transfer experiment was performed in which samples were measured by CD-AFM and then sent for high resolution transmission electron microscopy (HRTEM). In this manner, CD-AFM could be used to transfer the HRTEM width information to the distributed samples. Consequently, we are now able to reduce the limit on the standard uncertainty (k = 1) of CD-AFM width measurements to 1 nm.
For many years, lithographic resolution has been the main obstacle for keeping the pace of transistor densification to meet Moore's Law. For the 45 nm node and beyond, new lithography techniques are being considered, including immersion ArF lithography (iArF) and extreme ultraviolet (EUV) lithography. As in the past, these techniques will use new types of photoresists with the capability to print 45 nm node (and beyond) feature widths and pitches.In a previous paper ("SEM Metrology for Advanced Lithographies," Proc SPIE, v6518, 65182B, 2007), we compared the effects of several types of resists, ranging from deep ultraviolet (DUV) (248 nm) through ArF (193 nm) and iArF to extreme UV (EUV, 13.5 nm). iArF resists were examined, and the results from the available resist sample showed a tendency to shrink in the same manner as the ArF resist but at a lower magnitude.This paper focuses on variations of iArF resists (different chemical formulations and different lithographic sensitivities) and examine new developments in iArF resists during the last year. We characterize the resist electron beam induced shrinkage behavior under scanning electron microscopy (SEM) and evaluate the shrinkage magnitude on mature resists as well as R&D resists. We conclude with findings on the readiness of SEM metrology for these challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.