Abstract. Many previous studies have suggested a link between alcohol outlets and assaultive violence. In this paper, we evaluate the impact of the "1992 Civil Unrest" in Los Angeles (which followed the "Rodney King incident"), in which many alcohol outlets were damaged leading to a decrease in alcohol outlet density, on crime. We leverage the natural experiment created by the closure of alcohol outlets in certain areas and not others to explore the effects of alcohol availability on assault crimes at the census tract level. We develop a hierarchical model that controls for important covariates (such as race and socio-economic status) and accounts for unexplained spatial and temporal variability. While our model is somewhat complex, its hierarchical Bayesian analysis is accessible via the WinBUGS software. Our results show that, keeping other effects fixed, the reduction in alcohol availability within a census tract was associated with a drop in the assaultive violence rate at the census tract level. Comparing several dual candidate changepoint models using the Deviance Information Criterion, the drop in assaultive violence rate is best seen as having occurred one year after the reduction in alcohol availability, with the effect lasting roughly five years. We also create maps of the fitted assault rates in Los Angeles, as well as spatial residual maps that suggest various spatially-varying covariates are still missing from our model.
Background
Given the growing availability of multilevel data from national surveys, researchers interested in contextual effects may find themselves with a small number of individuals per group. Although there is a growing body of literature on sample size in multilevel modeling, few have explored the impact of group size < 5.
Methods
In a simulated analysis of real data, we examined the impact of group size < 5 on both a continuous and dichotomous outcome in a simple two-level multilevel model. Models with group sizes 1 to 5 were compared to models with complete data. Four different linear and logistic models were examined: empty models, models with a group-level covariate, models with an individual-level covariate, and models with an aggregated group-level covariate. We further evaluated whether the impact of small group size differed depending on the total number of groups.
Results
When the number of groups was large (N=459), neither fixed nor random components were affected by small group size, even when 90% of tracts had only 1 individual per tract and even when an aggregated group -level covariate was examined. As the number of groups decreased, the standard error estimates of both fixed and random effects were inflated. Furthermore, group-level variance estimates were more affected than were fixed components.
Conclusions
Datasets where there are a small to moderate number of groups with the majority very small group size (n < 5) size may fail to find or even consider a group-level effect when one may exist and also may be under-powered to detect fixed effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.