Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.
Dust events in the Middle East are becoming more frequent and intense in recent years with impacts on air quality, climate, and public health. In this study, the relationship between dust, as determined from Aerosol Optical Depth (AOD) and meteorological parameters (precipitation, temperature, pressure and wind field) are examined using monthly data from 2000 to 2015 for desert areas in two areas, Iraq-Syria and Saudi Arabia. Bivariate regression analysis between monthly temperature data and AOD reveals a high correlation for Saudi Arabia (R = 0.72) and Iraq-Syria (R = 0.64). Although AOD and precipitation are correlated in February, March and April, the relationship is more pronounced on annual timescales. The opposite is true for the relationship between temperature and AOD, which is evident more clearly on monthly time scales, with the highest temperatures and AOD typically between August and September. Precipitation data suggest that long-term reductions in rainfall promoted lower soil moisture and vegetative cover, leading to more intense dust emissions. Superimposed on the latter effect are more short term variations in temperature exacerbating the influence on the dust storm genesis in hot periods such as the late warm season of the year. Case study analysis of March 2012 and March 2014 shows the impact of synoptic systems on dust emissions and transport in the study region. Dust storm activity was more intense in March 2012 as compared to March 2014 due to enhanced atmospheric turbulence intensifying surface winds.
Using the newly developed Middle East Dust Index (MEDI) applied to MODIS satellite data, we consider a relationship between the recent desertified regions, over the past three decades, and the dust source points identified during the period of 2001-2012. Results indicate that major source points are located in Iraq and Syria, and by implementing the spectral mixture analysis on the Landsat TM images (1984 and 2012), a novel desertification map was extracted. Results of this study indicate for the first time that c.a.,39% of all detected source points are located in this newly anthropogenically desertified area. Using extracted indices for Deep Blue algorithm, dust sources were classified into three levels of intensity: low, medium, and high. A large number of low frequency sources are located within or close to the newly desertified areas. These severely desertified regions require immediate concern at a global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.