During the last decade, a large number of tumor-associated antigens (TAA) have been identified, which can be recognized by T cells. This has led to renewed interest in the use of active immunization as a modality for the treatment of cancer. HER-2/neu is a 185-KDa receptor-like glycoprotein that is overexpressed by a variety of tumors including breast, ovarian, lung, prostate and colorectal carcinomata. Several immunogenic HER-2/neu peptides recognized by cytotoxic T lymphocytes (CTL) or helper T lymphocytes (TH) have been identified thus far. Patients with HER-2/neu over-expressing cancers exhibit increased frequencies of peripheral blood T cells recognizing immunogenic HER-2/neu peptides. Various protocols for generating T cell-mediated immune responses specific for HER-2/neu peptides have been examined in pre-clinical models or in clinical trials. Vaccination studies in animals utilizing HER-2/neu peptides have been successful in eliminating tumor growth. In humans, however, although immunological responses have been detected against the peptides used for vaccination, no clinical responses have been described. Because HER-2/neu is a self-antigen, functional immune responses against it may be limited through tolerance mechanisms. Therefore, it would be interesting to determine whether abrogation of tolerance to HER-2/neu using appropriate adjuvants and/or peptide analogs may lead to the development of immune responses to HER-2/neu epitopes that can be of relevance to cancer immunotherapy. Vaccine preparations containing mixtures of HER-2/neu peptides and peptide from other tumor-related antigens might also enhance efficacy of therapeutic vaccination.
BackgroundTumor immune cell infiltrates are essential in hindering cancer progression and may complement the TNM classification. CD8+ and CD163+ cells have prognostic impact in breast cancer but their spatial heterogeneity has not been extensively explored in this type of cancer. Here, their potential as prognostic biomarkers was evaluated, depending on their combined densities in the tumor center (TC) and the tumor invasive margin (IM).MethodsCD8+ and CD163+ cells were quantified by immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples from a cohort totaling 162 patients with histologically-confirmed primary invasive non-metastatic ductal breast cancer diagnosed between 2000 and 2015. Clinical follow-up (median 6.9 years) was available for 97 of these patients.ResultsDifferential densities of CD8+ and CD163+ cells in the combined TC and IM compartments (i.e., high(H)/low(L), respectively for CD8+ cells and the reverse L/H combination for CD163+ cells) were found to have significant prognostic value for survival, and allowed better patient stratification than TNM stage, tumor size, lymph node invasion and histological grade. The combined evaluation of CD8+ and CD163+ cell densities jointly in TC and IM further improves prediction of clinical outcomes based on disease-free and overall survival. Patients having the favorable immune signatures had favorable clinical outcomes despite poor clinicopathological parameters.ConclusionsGiven the important roles of CD8+ and CD163+ cells in regulating opposing immune circuits, adding an assessment of their differential densities to the prognostic biomarker armamentarium in breast cancer would be valuable. Larger validation studies are necessary to confirm these findings.Trial registrationsStudy code: IRB-ID 6079/448/10-6-13Date of approval: 10/06/2013Retrospective study (2000–2010)First patient prospectively enrolled 14/2/2014Electronic supplementary materialThe online version of this article (doi:10.1186/s40425-017-0240-7) contains supplementary material, which is available to authorized users.
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.