Artificial tissues constructed from therapeutic cells offer a promising approach for improving the treatment of severe peripheral nerve injuries. In this study the effectiveness of using CTX0E03, a conditionally immortalised human neural stem cell line, as a source of allogeneic cells for constructing living artificial nerve repair tissue was tested. CTX0E03 cells were differentiated then combined with collagen to form engineered neural tissue (EngNT-CTX), stable aligned sheets of cellular hydrogel. EngNT-CTX sheets were delivered within collagen tubes to repair a 12 mm sciatic nerve injury model in athymic nude rats. Autologous nerve grafts (autografts) and empty tubes were used for comparison. After 8 weeks functional repair was assessed using electrophysiology. Further, detailed histological and electron microscopic analysis of the repaired nerves was performed. Results indicated that EngNT-CTX supported growth of neurites and vasculature through the injury site and facilitated reinnervation of the target muscle. These findings indicate for the first time that a clinically validated allogeneic neural stem cell line can be used to construct EngNT. This provides a potential ‘off the shelf’ tissue engineering solution for the treatment of nerve injury, overcoming the limitations associated with nerve autografts or the reliance on autologous cells for populating repair constructs.
The emergence of cell and gene therapies has generated significant interest in their clinical and commercial potential. However, these therapies are prohibitively expensive to manufacture and can require extensive time for development due to our limited process knowledge and understanding. The automated ambr250® stirred-tank bioreactor platform provides an effective platform for high-throughput process development. However, the original dual pitched-blade 20 mm impeller and baffles proved sub-optimal for cell therapy candidates that require suspension of microcarriers (e.g. for the culture of adherent human mesenchymal stem cells) or other particles such as activating Dynabeads® (e.g. for the culture of human T-cells). We demonstrate the development of a new ambr250® stirred-tank bioreactor vessel which has been designed specifically to improve the suspension of microcarriers/beads and thereby improve the culture of such cellular systems. The new design is unbaffled and has a single, larger elephant ear impeller. We undertook a range of engineering and physical characterizations to determine which vessel and impeller configuration would be most suitable for suspension based on the minimum agitation speed (NJS) and associated specific power input (P/V)JS. A vessel (diameter, T, = 60 mm) without baffles and incorporating a single elephant ear impeller (diameter 30 mm and 45° pitch-blade angle) was selected as it had the lowest (P/V)JS and therefore potentially, based on Kolmogorov concepts, was the most flexible system. These experimentally-based conclusions were further validated firstly with computational fluid dynamic (CFD) simulations and secondly experimental studies involving the culture of both T-cells with Dynabeads® and hMSCs on microcarriers. The new ambr250® stirred-tank bioreactor successfully supported the culture of both cell types, with the T-cell culture demonstrating significant improvements compared to the original ambr250® and the hMSC-microcarrier culture gave significantly higher yields compared with spinner flask cultures. The new ambr250® bioreactor vessel design is an effective process development tool for cell and gene therapy candidates and potentially for autologous manufacture too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.